Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems

被引:152
作者
Cui, Jian [1 ]
Cirac, J. Ignacio [2 ]
Banuls, Mari Carmen [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
RENORMALIZATION-GROUP; PHASE-TRANSITION; DRIVEN;
D O I
10.1103/PhysRevLett.114.220601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new variational method based on the matrix product operator (MPO) ansatz, for finding the steady state of dissipative quantum chains governed by master equations of the Lindblad form. Instead of requiring an accurate representation of the system evolution until the stationary state is attained, the algorithm directly targets the final state, thus, allowing for a faster convergence when the steady state is a MPO with small bond dimension. Our numerical simulations for several dissipative spin models over a wide range of parameters illustrate the performance of the method and show that, indeed, the stationary state is often well described by a MPO of very moderate dimensions.
引用
收藏
页数:5
相关论文
共 55 条
[1]   Dynamical phases and intermittency of the dissipative quantum Ising model [J].
Ates, Cenap ;
Olmos, Beatriz ;
Garrahan, Juan P. ;
Lesanovsky, Igor .
PHYSICAL REVIEW A, 2012, 85 (04)
[2]   Realization of the Dicke Model Using Cavity-Assisted Raman Transitions [J].
Baden, Markus P. ;
Arnold, Kyle J. ;
Grimsmo, Arne L. ;
Parkins, Scott ;
Barrett, Murray D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[3]   Matrix Product States for Dynamical Simulation of Infinite Chains [J].
Banuls, M. C. ;
Hastings, M. B. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[4]  
Barthel T., COMMUNICATION
[5]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[6]   Dynamical and steady-state properties of a Bose-Hubbard chain with bond dissipation: A study based on matrix product operators [J].
Bonnes, Lars ;
Charrier, Daniel ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW A, 2014, 90 (03)
[7]   Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems [J].
Cai, Zi ;
Barthel, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[9]   Renormalization and tensor product states in spin chains and lattices [J].
Cirac, J. Ignacio ;
Verstraete, Frank .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[10]   Interactions of solitons with a Gaussian barrier: splitting and recombination in quasi-one-dimensional and three-dimensional settings [J].
Cuevas, J. ;
Kevrekidis, P. G. ;
Malomed, B. A. ;
Dyke, P. ;
Hulet, R. G. .
NEW JOURNAL OF PHYSICS, 2013, 15