The construction of exact rational solutions with constant asymptotic values at infinity of two-dimensional NVN integrable nonlinear evolution equations via the partial derivative-dressing method

被引:14
作者
Dubrovsky, VG [1 ]
Formusatik, IB [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 09期
关键词
D O I
10.1088/0305-4470/34/9/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classes of exact rational solutions with constant asymptotic values at infinity of Nizhnik-Veselov-Novikov (NVN) equations via the partial derivative -dressing method of Zakharov and Manakov are constructed. At fixed time such solutions are the transparent (exactly solvable) potentials for one-dimensional Klein-Gordon or two-dimensional stationary Schrodinger equations. Among the constructed solutions are singular and also non-singular ones.
引用
收藏
页码:1837 / 1851
页数:15
相关论文
共 19 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT, V149
[2]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[3]   THE D-BAR APPROACH TO INVERSE SCATTERING AND NONLINEAR EVOLUTIONS [J].
BEALS, R ;
COIFMAN, RR .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 18 (1-3) :242-249
[4]   THE NON-LOCAL PARTIAL-DIFFERENTIAL-EQUATION PROBLEM AND (2+1)-DIMENSIONAL SOLITON-EQUATIONS [J].
BOGDANOV, LV ;
MANAKOV, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10) :L537-L544
[5]  
FOCAS AS, 1983, LECT NOTE PHYS, V189, P137
[6]   THE DRESSING METHOD AND NONLOCAL RIEMANN-HILBERT PROBLEMS [J].
FOKAS, AS ;
ZAKHAROV, VE .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :109-134
[7]  
GRINEVICH PG, 1986, FUNKTSIONAL ANAL PRI, V20, P14
[8]   TWO-DIMENSIONAL INVERSE SCATTERING PROBLEM FOR NEGATIVE ENERGIES AND GENERALIZED-ANALYTIC FUNCTIONS .1. ENERGIES BELOW THE GROUND-STATE [J].
GRINEVICH, PG ;
NOVIKOV, SP .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1988, 22 (01) :19-27
[9]  
GRINEVICH PG, 1988, PLASMA THEORY NONLIN, V1, P58
[10]  
Konopelchenko B.G., 1993, Solitons in Multidimensions, DOI DOI 10.1142/1982