A novel stabilized Galerkin meshless method for steady incompressible Navier-Stokes equations

被引:10
作者
Hu, Guanghui [1 ]
Li, Ruo [2 ]
Zhang, Xiaohua [3 ,4 ,5 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] China Three Gorges Univ, Hubei Int Sci & Technol Cooperat Base Fish Passag, Yichang 443002, Peoples R China
[4] China Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R China
[5] China Three Gorges Univ, Gorges Math Res Ctr 3, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
Galerkin meshless method; Variational multiscale method; Incompressible Navier-Stokes equations; Stabilized method; BOUNDARY NODE METHOD; FINITE POINT METHOD; NATURAL-CONVECTION; MLPG METHOD; DIFFUSION; FLOWS;
D O I
10.1016/j.enganabound.2021.08.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the paper, a novel stabilized meshless method is presented for solving steady incompressible fluid flow problems. For this method, the standard Galerkin discretization is used to momentum equations, where the variational multiscale method is applied to mass conservation equation. Thus, the novel stabilized method can be regarded as a simplification of the variational multiscale element free Galerkin method, but it still retains the advantages of the variational multiscale element free Galerkin method. The present method allows equal linear basis approximation of both velocity and pressure and avoids the Ladyzhenskaya-Babuska-Breezi(LBB) condition. Meanwhile, it can automatically obtain the stabilization tensor. Three Stokes flow and two Navier- Stokes flow problems are applied to validate the accuracy and feasibility of the present method. It is shown that the present stabilized meshless method can guarantee the numerical stability and accuracy for incompressible fluid flow problems. Moreover, it can save computational cost evidently compared with variational multiscale element free Galerkin method.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 66 条
[21]  
Lewis R.W., 2004, FUNDAMENTALS FINITE
[22]   A meshless interpolating Galerkin boundary node method for Stokes flows [J].
Li, Xiaolin .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 51 :112-122
[23]   A new stability-guaranteed second-order difference scheme [J].
Li, ZY ;
Tao, WQ .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2002, 42 (04) :349-365
[24]  
Lin H, 2001, CMES-COMP MODEL ENG, V2, P117
[25]  
Lin H, 2000, CMES-COMP MODEL ENG, V1, P45
[26]  
Liu GR., 2005, INTRO MESHFREE METHO, DOI [DOI 10.1007/1-4020-3468-7, DOI 10.1017/CBO9781107415324.004]
[27]   AN OVERVIEW ON SMOOTHED PARTICLE HYDRODYNAMICS [J].
Liu, M. B. ;
Liu, G. R. ;
Zong, Z. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2008, 5 (01) :135-188
[28]  
Liu MB, 2003, SMOOTHED PARTICLE HY, DOI DOI 10.1142/5340
[29]   Numerical solution of the incompressible Navier-Stokes equations in primitive variables and velocity-vorticity formulation [J].
Loukopoulos, V. C. ;
Messaris, G. T. ;
Bourantas, G. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 :575-588
[30]  
Mao Z., 2019, IEEE INT S TECHN HOM, P1