Classical Mechanism is Optimal in Classical-Quantum Differentially Private Mechanisms

被引:0
|
作者
Yoshida, Yuuya [1 ]
Hayashi, Masahito [1 ,2 ,3 ,4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi, Japan
[2] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Peoples R China
[3] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen, Peoples R China
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
来源
2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2020年
基金
日本学术振兴会;
关键词
differential privacy; quantum state; information processing inequality; parameter estimation; RANDOMIZED-RESPONSE; STATES;
D O I
10.1109/isit44484.2020.9174484
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Differential privacy (DP) is an influential privacy measure and has been studied to protect private data. DP has been often studied in classical probability theory, but few researchers studied quantum versions of DP. In this paper, we consider classical-quantum DP mechanisms which (i) convert binary private data to quantum states and (ii) satisfy a quantum version of the DP constraint. The class of classical-quantum DP mechanisms contains classical DP mechanisms. As a main result, we show that some classical DP mechanism optimizes any information quantity satisfying the information processing inequality. Therefore, the performance of classical DP mechanisms attains that of classical-quantum DP mechanisms.
引用
收藏
页码:1973 / 1977
页数:5
相关论文
共 50 条
  • [1] The Classical-Quantum Limit
    Layton, Isaac
    Oppenheim, Jonathan
    PRX QUANTUM, 2024, 5 (02):
  • [2] Fluctuations, Entropic Quantifiers and Classical-Quantum Transition
    Pennini, Flavia
    Plastino, Angelo
    ENTROPY, 2014, 16 (03): : 1178 - 1190
  • [3] Classical-quantum dual encoding for laser communications in space
    Winnel, Matthew S.
    Wang, Ziqing
    Malaney, Robert
    Aguinaldo, Ryan
    Green, Jonathan
    Ralph, Timothy C.
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [4] Generalized relative entropies and the capacity of classical-quantum channels
    Mosonyi, Milan
    Datta, Nilanjana
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [5] Computing Sum of Sources Over a Classical-Quantum MAC
    Sohail, Mohammad Aamir
    Atif, Touheed Anwar
    Padakandla, Arun
    Pradhan, S. Sandeep
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (12) : 7913 - 7934
  • [6] Perfect and Quasi-Perfect Codes for the Bosonic Classical-Quantum Channel
    Coll, Andreu Blasco
    Fonollosa, Javier R.
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2023, 4
  • [7] Optimal Differentially Private Mechanisms for Randomised Response
    Holohan, Naoise
    Leith, Douglas J.
    Mason, Oliver
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2017, 12 (11) : 2726 - 2735
  • [8] Tight Lower Bound on the Error Exponent of Classical-Quantum Channels
    Renes, Joseph M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 530 - 538
  • [9] Quantum Private Comparison without Classical Computation
    Lang, Yan-Feng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (09) : 2984 - 2992
  • [10] IMPOSSIBILITY OF DIFFERENTIALLY PRIVATE UNIVERSALLY OPTIMAL MECHANISMS
    Brenner, Hai
    Nissim, Kobbi
    SIAM JOURNAL ON COMPUTING, 2014, 43 (05) : 1513 - 1540