ANALYSIS OF THE LAPLACIAN AND SPECTRAL OPERATORS ON THE VICSEK SET

被引:16
作者
Constantin, Sarah [1 ]
Strichartz, Robert S. [2 ]
Wheeler, Miles [3 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Vicsek set; Laplacians on fractals; spectral operators; heat kernels; wave propagators; Green's function; Weyl ratio; eigenvalue clusters; eigenvalue ratio gaps; DIFFERENTIAL-EQUATIONS; GAPS;
D O I
10.3934/cpaa.2011.10.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectral decomposition of the Laplacian on a family of fractals VSn that includes the Vicsek set for n = 2, extending earlier research on the Sierpinski Gasket. We implement an algorithm [23] for spectral decimation of eigenfunctions of the Laplacian, and explicitly compute these eigenfunctions and some of their properties. We give an algorithm for computing inner products of eigenfunctions. We explicitly compute solutions to the heat equation and wave equation for Neumann boundary conditions. We study gaps in the ratios of eigenvalues and eigenvalue clusters. We give an explicit formula for the Green's function on VSn. Finally, we explain how the spectrum of the Laplacian on VSn converges as n -> 1 to the spectrum of the Laplacian on two crossed lines (the limit of the sets VSn.)
引用
收藏
页码:1 / 44
页数:44
相关论文
共 22 条
[1]  
Adams B, 2003, TRENDS MATH, P1
[2]  
[Anonymous], 2001, ANAL FRACTALS
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]   Outer Approximation of the Spectrum of a Fractal Laplacian [J].
Berry, Tyrus ;
Heilman, Steven M. ;
Strichartz, Robert S. .
EXPERIMENTAL MATHEMATICS, 2009, 18 (04) :449-480
[5]   Partial differential equations on products of Sierpinski gaskets [J].
Bockelman, Brian ;
Strichartz, Robert S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1361-1375
[6]   Numerical analysis on the Sierpinski gasket, with applications to Schrodinger equations, wave equation, and Gibbs' phenomenon [J].
Coletta, K ;
Dias, K ;
Strichartz, RS .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2004, 12 (04) :413-449
[7]  
CONSTANTIN S, 2009, SPECTRAL OPERATORS V
[8]   Fractal differential equations on the Sierpinski gasket [J].
Dalrymple, K ;
Strichartz, RS ;
Vinson, JP .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) :203-284
[9]   SPECTRAL DECIMATION ON HAMBLY'S HOMOGENEOUS HIERARCHICAL GASKETS [J].
Drenning, Shawn ;
Strichartz, Robert S. .
ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (03) :915-937
[10]  
Duong XT, 2002, J FUNCT ANAL, V196, P443