Scores selection via Fisher's discriminant power in PCA-LDA to improve the classification of food data

被引:48
作者
de Almeida, Valber Elias [1 ]
de Sousa Fernandes, David Douglas [1 ]
Goncalves Dias Diniz, Paulo Henrique [2 ]
Gomes, Adriano de Araujo [3 ]
Veras, Germano [4 ]
Harrop Galvao, Roberto Kawakami [5 ]
Ugulino Araujo, Mario Cesar [1 ]
机构
[1] Univ Fed Paraiba, Dept Quim, POB 5093, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Oeste Bahia, Programa Posgrad Quim Pura & Aplicada, BR-47810059 Barreiras, BA, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Quim Inorgan, BR-91501970 Porto Alegre, RS, Brazil
[4] Univ Estadual Paraiba, Ctr Ciencia & Tecnol, Dept Quim, BR-58429500 Campina Grande, Paraiba, Brazil
[5] Inst Tecnol Aeronaut, Div Engn Eletron, BR-12228900 Sao Jose Dos Campos, SP, Brazil
关键词
Discriminability; Dimensionality reduction; Classification; Pattern Recognition; INFRARED-SPECTROSCOPY; VARIABLE SELECTION;
D O I
10.1016/j.foodchem.2021.130296
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This paper proposes an adaptation of the Fisher's discriminability criterion (named here as discriminant power, DP) for choosing principal components (obtained from Principal Component Analysis, PCA), which will be used to construct supervised Linear Discriminant Analysis (LDA) models for solving classification problems of food data. The proposed PCA-DP-LDA algorithm was then applied to (i) simulated data, (ii) classify soybean oils with respect to expiration date, and (iii) identify cachaca adulteration with wood extracts that simulated aging. For comparison, PCA-DP-LDA was evaluated against conventional PCA-LDA (based on explained variance) and Partial Least Squares-Discriminant Analysis (PLS-DA). Among them, PCA-DP-LDA achieved the most parsimonious and interpretable results, with similar or better classification performance. Therefore, the new algorithm can be considered a good alternative to the already well-established discriminant methods, being potentially applied where the discriminability of the principal components may not follow the same behavior of the explained variance.
引用
收藏
页数:8
相关论文
共 20 条
  • [1] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    [J]. ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [2] Surface-enhanced Raman scattering analysis of urine from deceased donors as a prognostic tool for kidney transplant outcome
    Chi, Jingmao
    Ma, Yiwei
    Weng, Francis L.
    Thiessen-Philbrook, Heather
    Parikh, Chirag R.
    Du, Henry
    [J]. JOURNAL OF BIOPHOTONICS, 2017, 10 (12) : 1743 - 1755
  • [3] Using near infrared spectroscopy to classify soybean oil according to expiration date
    da Costa, Gean Bezerra
    Sousa Fernandes, David Douglas
    Gomes, Adriano A.
    de Almeida, Valber Elias
    Veras, Germano
    [J]. FOOD CHEMISTRY, 2016, 196 : 539 - 543
  • [4] Simultaneous identification of the wood types in aged cachacas and their adulterations with wood extracts using digital images and SPA-LDA
    de Sousa Fernandes, David Douglas
    de Almeida, Valber Elias
    Fontes, Marcelo Marques
    Ugulino de Araujo, Mario Cesar
    Veras, Germano
    Goncalves Dias Diniz, Paulo Henrique
    [J]. FOOD CHEMISTRY, 2019, 273 : 77 - 84
  • [5] Duda R.O., 2000, Pattern Classification
  • [6] The use of multiple measurements in taxonomic problems
    Fisher, RA
    [J]. ANNALS OF EUGENICS, 1936, 7 : 179 - 188
  • [7] A method for calibration and validation subset partitioning
    Galvao, RKH
    Araujo, MCU
    José, GE
    Pontes, MJC
    Silva, EC
    Saldanha, TCB
    [J]. TALANTA, 2005, 67 (04) : 736 - 740
  • [8] Using UV-Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup
    Goncalves Dias Diniz, Paulo Henrique
    Barbosa, Mayara Ferreira
    Tavares de Melo Milanez, Karla Danielle
    Fabian Pistonesi, Marcelo
    Ugulino de Araujo, Mario Cesar
    [J]. FOOD CHEMISTRY, 2016, 192 : 374 - 379
  • [9] Heseltine T., 2004, P SPIE, V10
  • [10] The classification of lung cancers and their degree of malignancy by FTIR, PCA-LDA analysis, and a physics-based computational model
    Kaznowska, E.
    Depciuch, J.
    Lach, K.
    Kolodziej, M.
    Koziorowska, A.
    Vongsvivut, J.
    Zawlik, I.
    Cholewa, M.
    Cebulski, J.
    [J]. TALANTA, 2018, 186 : 337 - 345