Probing electrode structure using electrochemical impedance spectroscopy

被引:0
作者
Murthy, M [1 ]
机构
[1] WL Gore & Assoc Inc, Gore Fuel Cell Technol, Elkton, MD 21922 USA
来源
PROTON CONDUCTING MEMBRANE FUEL CELLS III, PROCEEDINGS | 2005年 / 2002卷 / 31期
关键词
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we extend the technique described by Lefebvre et al. to perform impedance measurements in N-2/N-2 using Membrane Electrode Assemblies (MEAs) containing symmetrical electrodes at different relative humidities. The average ionic resistance of the individual catalyst layer can therefore be estimated from one half of the total average ionic resistance. The trends in the ionic resistance with RH can be extrapolated to obtain the value at 100% RH. The value at 100% RH is useful for benchmarking different electrode structures and compositions in terms of maximum possible ionic conductivity and for comparisons with fuel cell data obtained under stationary conditions wherein the RH is typically 100%. This paper discusses the details of the methodology adopted and provides examples wherein the use of impedance measurements allow us to gain valuable insight related to the composition and structure of these electrodes. For certain types of electrodes, or electrodes operating under sub-saturated conditions typical for automotive conditions, lower proton conductivity should have a significant negative effect on fuel cell performance.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 50 条
[41]   Effect of internal resistance of reference electrode system on electrochemical impedance spectroscopy [J].
Li, MC ;
Zeng, CL ;
Lin, HC ;
Cao, CN .
BULLETIN OF ELECTROCHEMISTRY, 2001, 17 (07) :299-302
[42]   Investigation of electrode composition of polymer fuel cells by electrochemical impedance spectroscopy [J].
Wagner, N. ;
Kaz, T. ;
Friedrich, K. A. .
ELECTROCHIMICA ACTA, 2008, 53 (25) :7475-7482
[43]   Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy [J].
Kim, Seonghwan ;
Yu, Guiduk ;
Kim, Taeyoung ;
Shin, Kyusoon ;
Yoon, Jeyong .
ELECTROCHIMICA ACTA, 2012, 82 :126-131
[44]   ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) - A POWERFUL INSITU TECHNIQUE FOR ELECTRODE PROCESSES [J].
PAATSCH, W .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 1991, 69 :90-91
[45]   Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A [J].
Ohno, Ryuzo ;
Ohnuki, Hitoshi ;
Wang, Huihui ;
Yokoyama, Takuya ;
Endo, Hideaki ;
Tsuya, Daiju ;
Izumi, Mitsuru .
BIOSENSORS & BIOELECTRONICS, 2013, 40 (01) :422-426
[46]   Nanotopography and electrochemical impedance spectroscopy of palladium deposited on different electrode materials [J].
Henryk Scholl ;
Tadeusz Blaszczyk ;
Andrzej Leniart ;
Krzysztof Polanski .
Journal of Solid State Electrochemistry, 2004, 8 :308-315
[47]   Characterisation by electrochemical impedance spectroscopy of a pet membrane electrode based on zeolithe [J].
Nacer, Houria ;
Afia, Laila ;
Salghi, Rachid ;
Touzani, Rachid ;
Bouzenada, Laid ;
Hammouti, Belkheir ;
Renault, Nicole Jaffrezic .
RESEARCH ON CHEMICAL INTERMEDIATES, 2015, 41 (05) :3261-3273
[48]   Combined step potential electrochemical spectroscopy and electrochemical impedance spectroscopy analysis of the glassy carbon electrode in an aqueous electrolyte [J].
Davey, Sofia B. ;
Cameron, Amanda P. ;
Latham, Kenneth G. ;
Donne, Scott W. .
ELECTROCHIMICA ACTA, 2021, 396
[49]   Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry [J].
Kharitonov, AB ;
Alfonta, L ;
Katz, E ;
Willner, I .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 487 (02) :133-141
[50]   Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy [J].
Tymoczko, Jakub ;
Colic, Viktor ;
Bandarenka, Aliaksandr S. ;
Schuhmann, Wolfgang .
SURFACE SCIENCE, 2015, 631 :81-87