Features of Heat Treatment the Ti-6Al-4V GTD Blades Manufactured by DLD Additive Technology

被引:15
作者
Gushchina, Marina [1 ]
Turichin, Gleb [1 ]
Klimova-Korsmik, Olga [1 ]
Babkin, Konstantin [1 ]
Maggeramova, Lyubov [2 ]
机构
[1] State Marine Tech Univ, World Class Res Ctr Adv Digital Technol, St Petersburg 190121, Russia
[2] Cent Inst Aviat Motors CIAM, Moscow 111116, Russia
关键词
Ti-6Al-4V; direct energy deposition; thermal history; annealing; phase composition; microstructure; tensile properties; MECHANICAL-PROPERTIES; PART I; MICROSTRUCTURE; DEPOSITION; BEHAVIOR; TI6AL4V; COMPONENTS; EVOLUTION;
D O I
10.3390/ma14154159
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Additive manufacturing of titanium alloys is one of the fastest growing areas of 3D metal printing. The use of AM methods for parts production in the aviation industry is especially promising. During the deposition of products with differently sized cross-sections, the thermal history changes, which leads to non-uniformity of the structure and properties. Such heterogeneity can lead to failure of the product during operation. The structure of deposited parts, depending on the thermal cycle, may consist of alpha', alpha + alpha' + beta', and alpha + beta in different ratios. This problem can be solved by using heat treatment (HT). This paper presents research aimed towards the determination of optimal heat treatment parameters that allows the reception of the uniform formation of properties in the after-treatment state, regardless of the initial structure and properties, using the example of a deposited Ti-6Al-4V gas turbine blade.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J].
Antonysamy, A. A. ;
Meyer, J. ;
Prangnell, P. B. .
MATERIALS CHARACTERIZATION, 2013, 84 :153-168
[2]   Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V) [J].
Benzing, Jake ;
Hrabe, Nik ;
Quinn, Timothy ;
White, Ryan ;
Rentz, Ross ;
Ahlfors, Magnus .
MATERIALS LETTERS, 2019, 257
[3]  
Buczak N., 2019, KEY ENG MATER, V822, P389, DOI [10.4028/www.scientific.net/kem.822.389, DOI 10.4028/WWW.SCIENTIFIC.NET/KEM.822.389]
[4]  
Buczak N., 2019, KEY ENG MATER, V822, P467, DOI [10.4028/www.scientific.net/KEM.822.467, DOI 10.4028/WWW.SCIENTIFIC.NET/KEM.822.467]
[5]   Static coarsening behaviour of lamellar microstructure in selective laser melted Ti-6Al-4V [J].
Cao, Sheng ;
Hu, Qiaodan ;
Huang, Aijun ;
Chen, Zhuoer ;
Sun, Ming ;
Zhang, Jiahua ;
Fu, Chenxi ;
Jia, Qingbo ;
Lim, Chao Voon Samuel ;
Boyer, Rodney R. ;
Yang, Yi ;
Wu, Xinhua .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) :1578-1586
[6]   Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J].
Carroll, Beth E. ;
Palmer, Todd A. ;
Beese, Allison M. .
ACTA MATERIALIA, 2015, 87 :309-320
[7]   Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition [J].
Dinda, G. P. ;
Song, L. ;
Mazumder, J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (12) :2914-2922
[8]   Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) [J].
Galarraga, Haize ;
Warren, Robert J. ;
Lados, Diana A. ;
Dehoff, Ryan R. ;
Kirka, Michael M. ;
Nandwana, Peeyush .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 685 :417-428
[9]  
Gushchina M. O., 2020, IOP Conference Series: Materials Science and Engineering, V969, DOI 10.1088/1757-899X/969/1/012103
[10]   Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density [J].
Han, Jie ;
Yang, Jingjing ;
Yu, Hanchen ;
Yin, Jie ;
Gao, Ming ;
Wang, Zemin ;
Zeng, Xiaoyan .
RAPID PROTOTYPING JOURNAL, 2017, 23 (02) :217-226