Joint channel estimation and detection using Markov chain Monte Carlo method over sparse underwater acoustic channels

被引:14
作者
Jing, Lianyou [1 ]
He, Chengbing [1 ]
Huang, Jianguo [1 ]
Ding, Zhi [2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian, Shaanxi 710072, Peoples R China
[2] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
error statistics; Monte Carlo methods; Markov processes; channel estimation; signal detection; OFDM modulation; wireless channels; underwater acoustic communication; multipath channels; Bayes methods; turbo codes; iterative methods; joint channel estimation and signal detection approach; Markov chain Monte Carlo method; sparse underwater acoustic channel; orthogonal frequency division multiplexing transmission; UWA multipath channels; cluster sparsity; sparse channel estimation; modified spike-and-slab prior model; nonparametric Bayesian learning framework; closed-form Bayesian estimation; soft-input soft-output decoding; turbo iteration; bit error rate; TURBO EQUALIZATION; OFDM SYSTEMS; COMMUNICATION; RECOVERY; ALGORITHMS; RECEIVER;
D O I
10.1049/iet-com.2016.1339
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes a novel approach to joint channel estimation and detection of orthogonal frequency division multiplexing transmission over underwater acoustic (UWA) multipath channels exhibiting cluster sparsity. Unlike most sparse channel estimations, the authors exploit the cluster-sparsity characteristic of UWA channels without additional prior information. They adopt a modified spike-and-slab prior model in their non-parametric Bayesian learning framework. To avoid the need for a closed-form Bayesian estimate, they apply the Markov chain Monte Carlo technique to joint achieve channel estimation and signal detection. The proposed solution is amenable to being integrated with soft-input soft-output decoding to improve the performance through turbo iteration. Simulation results demonstrate improved bit error rate of the proposed algorithm over existing algorithms.
引用
收藏
页码:1789 / 1796
页数:8
相关论文
共 44 条
[1]   Low-Complexity Bayesian Estimation of Cluster-Sparse Channels [J].
Ballal, Tarig ;
Al-Naffouri, Tareq Y. ;
Ahmed, Syed Faraz .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2015, 63 (11) :4159-4173
[2]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[3]   Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing [J].
Berger, Christian R. ;
Zhou, Shengli ;
Preisig, James C. ;
Willett, Peter .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1708-1721
[4]  
Bergmann CP, 2011, PROTECTION AGAINST EROSIVE WEAR USING THERMAL SPRAYED CERMET: A REVIEW, P1, DOI 10.1007/978-3-642-21987-0
[5]   Near optimum error correcting coding and decoding: Turbo-codes [J].
Berrou, C ;
Glavieux, A .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (10) :1261-1271
[6]   Sparse Underwater Acoustic Channel Parameter Estimation Using a Wideband Receiver Array [J].
Byun, Sung-Hoon ;
Seong, Woojae ;
Kim, Sea-Moon .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2013, 38 (04) :718-729
[7]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[8]   Convergence analyses and comparisons of Markov chain Monte Carlo algorithms in digital communications [J].
Chen, R ;
Liu, JS ;
Wang, XD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :255-270
[9]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[10]   ITERATIVE CORRECTION OF INTERSYMBOL INTERFERENCE - TURBO-EQUALIZATION [J].
DOUILLARD, C ;
JEZEQUEL, M ;
BERROU, C ;
PICART, A ;
DIDIER, P ;
GLAVIEUX, A .
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1995, 6 (05) :507-511