The Well-Posedness of the Dirichlet Problem in the Cylindric Domain for the Multidimensional Wave Equation

被引:4
作者
Aldashev, Serik A. [1 ]
机构
[1] Aktobe State Univ, AGU, Aktobe 030000, Kazakhstan
关键词
D O I
10.1155/2010/653215
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the theory of hyperbolic PDEs, the boundary-value problems with conditions on the entire boundary of the domain serve typically as the examples of the ill-posedness. The paper shows the unique solvability of the Dirichlet problem in the cylindric domain for the multidimensional wave equation. We also establish the criterion for the unique solvability of the equation.
引用
收藏
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 1962, Multidimensional Singular Integrals and Integral Equations
[2]  
[Anonymous], 1902, PRINCETON U B
[3]  
Bateman G., 1974, Higher Transcendental Functions, VII
[4]  
Bitsadze A.V., 1959, A Pergamon Press Book
[5]  
Bourgin D. G., 1939, B AM MATH SOC, V45, P851
[6]  
FOX DW, 1958, ANN MAT PUR APPL, V46, P155
[7]  
Kamke E., 1965, HDB ORDINARY DIFFERE
[8]  
Nakhushev A. M., 2006, PROBLEMS SHIFT PARTI
[9]  
Tikhonov A. N., 1977, Equations of Mathematical Physics