Cech-De Rham theory for leaf spaces of foliations

被引:25
|
作者
Crainic, M [1 ]
Moerdijk, I [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
foliations; characteristic classes; etale groupoids; classifying spaces; cohomology;
D O I
10.1007/s00208-003-0473-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new ''Cech-De Rham'' model for the cohomology of the classifying space of a foliated manifold. This model enables us to lift the construction of known characteristic classes in the cohomology of the manifold to the cohomology of the classifying space, by standard geometric methods and without making any reference to (necessarily non-Hausdorff) groupoids and their classifying spaces. We also show how the Cech-De Rham model can be used to prove some other known formulas, as well as a version of Poincare duality for foliations.
引用
收藏
页码:59 / 85
页数:27
相关论文
共 50 条
  • [1] Thom form in equivariant Cech-de Rham theory
    Fujisawa, Ko
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (08)
  • [2] Cech-De Rham bicomplex in diffeology
    Iglesias-Zemmour, Patrick
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (01) : 239 - 276
  • [3] Finitary Cech-de Rham cohomology
    Mallios, A
    Raptis, I
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (10) : 1857 - 1902
  • [4] Čech-De Rham theory for leaf spaces of foliations
    Marius Crainic
    Ieke Moerdijk
    Mathematische Annalen, 2004, 328 : 59 - 85
  • [5] CECH-DE RHAM COMPLEX AS GAUGE GROUP COHOMOLOGY
    GUO, HY
    WANG, SK
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1985, 4 (03) : 397 - 403
  • [6] Twisted Poincare lemma and twisted Cech-de Rham isomorphism in case dimension=1
    Ito, Ko-Ki
    KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (01) : 193 - 204
  • [7] De Rham cohomology of diffeological spaces and foliations
    Hector, G.
    Macias-Virgos, E.
    Sanmartin-Carbon, E.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (3-4): : 212 - 220
  • [8] Gribov problem, contact terms and Cech-De Rham cohomology in 2D topological gravity
    Becchi, C.
    Imbimbo, C.
    Nuclear Physics, Section B, 462 (2-3):
  • [9] Gribov problem, contact terms and Cech-De Rham cohomology in 2D topological gravity
    Becchi, C
    Imbimbo, C
    NUCLEAR PHYSICS B, 1996, 462 (2-3) : 571 - 599
  • [10] Cech and de Rham cohomology of integral forms
    Catenacci, R.
    Debernardi, M.
    Grassi, P. A.
    Matessi, D.
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (04) : 890 - 902