Comparison of some Lie-symmetry-based integrators

被引:21
作者
Chhay, M. [1 ]
Hoarau, E. [2 ]
Hamdouni, A. [1 ]
Sagaut, P. [2 ]
机构
[1] Univ La Rochelle, LEPTIAB, La Rochelle, France
[2] Univ Paris 06, Inst Jean Le Rond dAlembert, UMR 7190, F-75252 Paris 5, France
关键词
Invariant scheme; Symmetry; Lie group method; Discrete differential invariant; Moving frame; MULTISYMPLECTIC GEOMETRY; VARIATIONAL INTEGRATORS; NUMERICAL SCHEMES; HEAT-TRANSFER; INVARIANTIZATION; DISCRETIZATION; CONSERVATION; TIME;
D O I
10.1016/j.jcp.2010.12.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lie-symmetry based integrators are constructed in order to preserve the local invariance properties of the equations. The geometrical methods leading to discretized equations for numerical computations involve many different concepts. Therefore they give rise to numerical schemes that vary in the accuracy, in the computational cost and in the implementation. In this paper a comparison is made between some alternative Lie-symmetry based methods illustrated on the example of the Burgers equation. The importance of the symmetry preservation is numerically highlighted. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2174 / 2188
页数:15
相关论文
共 50 条
[1]  
[Anonymous], 1935, METHODE REPERE MOBIL
[2]  
[Anonymous], SOLVING ORDINARY DIF
[3]  
[Anonymous], AM MATH SOC TRANSL
[4]   Symmetry-preserving difference schemes for some heat transfer equations [J].
Bakirova, MI ;
Dorodnitsyn, VA ;
Kozlov, RV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :8139-8155
[5]   Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity [J].
Bridges, TJ ;
Reich, S .
PHYSICS LETTERS A, 2001, 284 (4-5) :184-193
[6]   Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation [J].
Budd, C ;
Dorodnitsyn, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10387-10400
[7]  
Budd C.J., 2000, HDB NUMERICAL ANAL V, VXI., P35
[8]  
Budd C.J., 1998, NUMERICAL ANAL 1997, P16
[9]  
Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
[10]   ACCURATE LONG-TERM INTEGRATION OF DYNAMICAL-SYSTEMS [J].
CALVO, MP ;
HAIRER, E .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :95-105