Global exact boundary controllability for 1-D quasilinear wave equations

被引:5
作者
Wang, Ke [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
quasilinear wave equation; quasilinear hyperbolic equation; local exact boundary controllability; global exact boundary controllability;
D O I
10.1002/mma.1358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the local exact boundary controllability for 1-D quasilinear wave equations, the global exact boundary controllability for 1-D quasilinear wave equations in a neighborbood of any connected set of constant equilibria is obtained by an extension method. Similar results are also given for a kind of general 1-D quasilinear hyperbolic equations. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 11 条
[1]   Global boundary controllability of the de St. Venant equations between steady states [J].
Gugat, M ;
Leugering, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (01) :1-11
[2]   Global boundary controllability of the Saint-Venant system for sloped canals with friction [J].
Gugat, M. ;
Leugering, G. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01) :257-270
[3]   Exact boundary controllability for quasilinear wave equations [J].
Li, T .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) :127-135
[4]  
LI T, DISCRETE CONT DYN-B, DOI DOI 10.3934/DCDS.2010.28.243
[5]  
Li T., 2010, AIMS SERIES APPL MAT, V3
[6]   Exact boundary controllability for 1-D quasilinear wave equations [J].
Li Tatsien ;
Yu Lixin .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (03) :1074-1083
[7]  
Li T, 2007, INT J DYN SYST DIFFE, V1, P12, DOI 10.1504/IJDSDE.2007.013741
[8]   Global exact controllability of a class of quasilinear hyperbolic systems [J].
Li, TS ;
Zhang, BY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) :289-311
[9]   Global exact controllability for quasilinear hyperbolic systems of diagonal form with linearly degenerate characteristics [J].
Wang, Zhiqiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (02) :510-522
[10]   Exact boundary controllability for non-autonomous quasilinear wave equations [J].
Wang, Zhiqiang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (11) :1311-1327