MINIMIZERS FOR THE EMBEDDING OF BESOV SPACES

被引:0
作者
Chen, Mingjuan [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2017年 / 7卷 / 04期
关键词
Profile decomposition; Besov embedding; minimizer; compactness; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; BLOW-UP; SCATTERING; ENERGY; WAVELETS;
D O I
10.11918/2017100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the profile decomposition, we will show the relatively compactness of the minimizing sequence to the critical embeddings between Besov spaces, which implies the existence of minimizer of the critical embeddings of Besov spaces B-p1,q1(s1) -> B-p2,q2(s2) in d dimensions with s(1) - d/p1 = s2 - d/p2, S-1 > s(2) and 1 <= q(1) < q(2) <= infinity. Moreover, we establish the nonexistence of the minimizer in the case B-p1,q1(s1) -> B-p2,q2(s2).
引用
收藏
页码:1637 / 1651
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[2]  
[Anonymous], 1933, Acta Szeged Sect. Math
[3]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[4]  
Bahouri H., 2011, CONFLUENTES MATH, V3, P1
[5]   Stability by rescaled weak convergence for the Navier-Stokes equations [J].
Bahouri, Hajer ;
Chemin, Jean-Yves ;
Gallagher, Isabelle .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (04) :305-310
[6]  
BATTLE G, 1993, MICH MATH J, V40, P181
[7]  
Chemin J. Y., 2016, MORNINGSIDE LECT MAT, V4, P1
[8]   Scattering Below Critical Energy for the Radial 4D Yang-Mills Equation and for the 2D Corotational Wave Map System [J].
Cote, RaphaeL ;
Kenig, Carlos E. ;
Merle, Frank .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (01) :203-225
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]   Profile decomposition for solutions of the Navier-Stokes equations [J].
Gallagher, I .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (02) :285-316