Injection molding of long sisal fiber-reinforced polypropylene:: Effects of compatibilizer concentration and viscosity on fiber adhesion and thermal degradation

被引:27
作者
Arzondo, LM
Pérez, CJ
Carella, JM
机构
[1] Univ Mar del Plata, Fac Ingn, CONICET, Dept Ingn Mat, RA-7600 Mar Del Plata, Argentina
[2] Univ Mar del Plata, Fac Ingn, CONICET, Inst Invest Ciencia & Tecnol Mat INTEMA, RA-7600 Mar Del Plata, Argentina
关键词
D O I
10.1002/pen.20299
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A two-step process was used to obtain long sisal fiber-polypropylene (SF/PP)-reinforced thermoplastic composites, using maleic anhydride grafted polypropylene (MA-g-PP) as a compatibilizer. At a first stage, modified polypropylenes (mPP) were used for an extrusion impregnation process, for the preparation of composite pellets containing about 70 wt% of SF. SF/mPP pellets with a large aspect ratio were prepared by continuous extrusion impregnation of a continuous SF yarn, using a single screw extruder and an adequate impregnation die. The mPP used were MA-g-PP and regular polypropylene (PP), modified by reaction with different amounts of an organic peroxide. The composite pellets were thus dry blended with regular PP pellets in an injection machine hopper, and injection molded to obtain composite tensile specimens with a minimum quantity of modified polypropylene, minimum fiber breakage and thermal degradation, and excellent mechanical properties. It is shown that the fiber breakage is reduced to a minimum, even for recycled composites, due to the presence of the low-viscosity polymer layer wetting the SF fibers. The bulk composite effective viscosity and the fiber breakage extent and thermal degradation during the injection-molding step are found to be closely related. Blending with much less expensive mPP at the impregnation stage optimizes the amount of expensive MA-g-PP. (c) 2005 Society of Plastics Engineers.
引用
收藏
页码:613 / 621
页数:9
相关论文
共 19 条
[1]  
AGASSANT J, 1991, POLYM PROCESSING PRI, P41
[2]   Thermal stability of blends of polyolefins and sisal fiber [J].
Albano, C ;
González, J ;
Ichazo, M ;
Kaiser, D .
POLYMER DEGRADATION AND STABILITY, 1999, 66 (02) :179-190
[3]   A low-cost, low-fiber-breakage, injection molding process for long sisal fiber reinforced polypropylene [J].
Arzondo, LM ;
Vazquez, A ;
Carella, JM ;
Pastor, JM .
POLYMER ENGINEERING AND SCIENCE, 2004, 44 (09) :1766-1772
[4]  
Bigg DM., 1988, THERMOPLASTIC COMPOS, V1, P146
[5]  
CAMERON A, 1966, GREEN PRINCIPLES LUB
[6]   Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers [J].
Cyras, VP ;
Iannace, S ;
Kenny, JM ;
Vázquez, A .
POLYMER COMPOSITES, 2001, 22 (01) :104-110
[7]   THE NATURE OF ADHESION IN COMPOSITES OF MODIFIED CELLULOSE FIBERS AND POLYPROPYLENE [J].
FELIX, JM ;
GATENHOLM, P .
JOURNAL OF APPLIED POLYMER SCIENCE, 1991, 42 (03) :609-620
[8]   An investigation on the processing of sisal fibre reinforced polypropylene composites [J].
Fung, KL ;
Xing, XS ;
Li, RKY ;
Tjong, SC ;
Mai, YW .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (09) :1255-1258
[9]  
GAUTHIER R, 1998, POLYM COMMUN, V3, P287