High-throughput DNA Extraction and Genotyping of 3dpf Zebrafish Larvae by Fin Clipping

被引:13
作者
Kosuta, Ceres [1 ,2 ]
Daniel, Kate [1 ]
Johnstone, Devon L. [1 ,2 ]
Mongeon, Kevin [1 ,2 ]
Ban, Kevin [1 ,2 ]
LeBlanc, Sophie [1 ]
MacLeod, Stuart [1 ]
Et-Tahiry, Karim [2 ]
Ekker, Marc [2 ]
MacKenzie, Alex [1 ]
Pena, Izabella [1 ,2 ]
机构
[1] Childrens Hosp Eastern Ontario, Res Inst, Ottawa, ON, Canada
[2] Univ Ottawa, Dept Biol, Ottawa, ON, Canada
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2018年 / 136期
基金
加拿大健康研究院;
关键词
Genetics; Issue; 136; Zebrafish; Danio rerio; genotyping; larval fin clipping; DNA extraction; TARGETED GENE DISRUPTION; ANIMAL-MODELS; GENOME; EPILEPSY; SYSTEM;
D O I
10.3791/58024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zebrafish (Danio rerio) possess orthologues for 84% of the genes known to be associated with human diseases. In addition, these animals have a short generation time, are easy to handle, display a high reproductive rate, low cost, and are easily amenable to genetic manipulations by microinjection of DNA in embryos. Recent advances in gene editing tools are enabling precise introduction of mutations and transgenes in zebrafish. Disease modeling in zebrafish often leads to larval phenotypes and early death which can be challenging to interpret if genotypes are unknown. This early identification of genotypes is also needed in experiments requiring sample pooling, such as in gene expression or mass spectrometry studies. However, extensive genotypic screening is limited by traditional methods, which in most labs are performed only on adult zebrafish or in postmortem larvae. We addressed this problem by adapting a method for the isolation of PCR-ready genomic DNA from live zebrafish larvae that can be achieved as early as 72 h post-fertilization (hpf). This time and cost-effective technique, improved from a previously published genotyping protocol, allows the identification of genotypes from microscopic fin biopsies. The fins quickly regenerate as the larvae develop. Researchers are then able to select and raise the desired genotypes to adulthood by utilizing this high-throughput PCR-based genotyping procedure.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment [J].
Baraban, Scott C. ;
Dinday, Matthew T. ;
Hortopan, Gabriela A. .
NATURE COMMUNICATIONS, 2013, 4
[2]   In vivo genome editing using a high-efficiency TALEN system [J].
Bedell, Victoria M. ;
Wang, Ying ;
Campbell, Jarryd M. ;
Poshusta, Tanya L. ;
Starker, Colby G. ;
Krug, Randall G., II ;
Tan, Wenfang ;
Penheiter, Sumedha G. ;
Ma, Alvin C. ;
Leung, Anskar Y. H. ;
Fahrenkrug, Scott C. ;
Carlson, Daniel F. ;
Voytas, Daniel F. ;
Clark, Karl J. ;
Essner, Jeffrey J. ;
Ekker, Stephen C. .
NATURE, 2012, 491 (7422) :114-U133
[3]   Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases [J].
Doyon, Yannick ;
McCammon, Jasmine M. ;
Miller, Jeffrey C. ;
Faraji, Farhoud ;
Ngo, Catherine ;
Katibah, George E. ;
Amora, Rainier ;
Hocking, Toby D. ;
Zhang, Lei ;
Rebar, Edward J. ;
Gregory, Philip D. ;
Urnov, Fyodor D. ;
Amacher, Sharon L. .
NATURE BIOTECHNOLOGY, 2008, 26 (06) :702-708
[4]   Base-calling of automated sequencer traces using phred.: I.: Accuracy assessment [J].
Ewing, B ;
Hillier, L ;
Wendl, MC ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :175-185
[5]   Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae [J].
Godoy, Rafael ;
Noble, Sandra ;
Yoon, Kevin ;
Anisman, Hymie ;
Ekker, Marc .
JOURNAL OF NEUROCHEMISTRY, 2015, 135 (02) :249-260
[6]   Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish [J].
Grone, Brian P. ;
Marchese, Maria ;
Hamling, Kyla R. ;
Kumar, Maneesh G. ;
Krasniak, Christopher S. ;
Sicca, Federico ;
Santorelli, Filippo M. ;
Patel, Manisha ;
Baraban, Scott C. .
PLOS ONE, 2016, 11 (03)
[7]   Animal models in epilepsy research: legacies and new directions [J].
Grone, Brian P. ;
Baraban, Scott C. .
NATURE NEUROSCIENCE, 2015, 18 (03) :339-343
[8]   The zebrafish reference genome sequence and its relationship to the human genome [J].
Howe, Kerstin ;
Clark, Matthew D. ;
Torroja, Carlos F. ;
Torrance, James ;
Berthelot, Camille ;
Muffato, Matthieu ;
Collins, John E. ;
Humphray, Sean ;
McLaren, Karen ;
Matthews, Lucy ;
McLaren, Stuart ;
Sealy, Ian ;
Caccamo, Mario ;
Churcher, Carol ;
Scott, Carol ;
Barrett, Jeffrey C. ;
Koch, Romke ;
Rauch, Gerd-Joerg ;
White, Simon ;
Chow, William ;
Kilian, Britt ;
Quintais, Leonor T. ;
Guerra-Assuncao, Jose A. ;
Zhou, Yi ;
Gu, Yong ;
Yen, Jennifer ;
Vogel, Jan-Hinnerk ;
Eyre, Tina ;
Redmond, Seth ;
Banerjee, Ruby ;
Chi, Jianxiang ;
Fu, Beiyuan ;
Langley, Elizabeth ;
Maguire, Sean F. ;
Laird, Gavin K. ;
Lloyd, David ;
Kenyon, Emma ;
Donaldson, Sarah ;
Sehra, Harminder ;
Almeida-King, Jeff ;
Loveland, Jane ;
Trevanion, Stephen ;
Jones, Matt ;
Quail, Mike ;
Willey, Dave ;
Hunt, Adrienne ;
Burton, John ;
Sims, Sarah ;
McLay, Kirsten ;
Plumb, Bob .
NATURE, 2013, 496 (7446) :498-503
[9]   Efficient genome editing in zebrafish using a CRISPR-Cas system [J].
Hwang, Woong Y. ;
Fu, Yanfang ;
Reyon, Deepak ;
Maeder, Morgan L. ;
Tsai, Shengdar Q. ;
Sander, Jeffry D. ;
Peterson, Randall T. ;
Yeh, J-R Joanna ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :227-229
[10]   Rapid identification of transgenic zebrafish [J].
Kawakami, K ;
Hopkins, N .
TRENDS IN GENETICS, 1996, 12 (01) :9-10