Algebraic orbifold conformal field theories

被引:39
作者
Xu, F [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
D O I
10.1073/pnas.260375597
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The unitary rational orbifold conformal field theories in the algebraic quantum field theory and subfactor theory framework are formulated. Under general conditions, it is shown that the orbifold of a given unitary rational conformal field theory generates a unitary modular category. Many new unitary modular categories are obtained. It is also shown that the irreducible representations of orbifolds of rank one lattice vertex operator algebras give rise to unitary modular categories and determine the corresponding modular matrices, which has been conjectured for some time.
引用
收藏
页码:14069 / 14073
页数:5
相关论文
共 30 条
[1]  
BANTAY P, 1998, HEPTH9910079
[2]  
BARRON K, 1999, QA9803118
[3]   Modular invariants, graphs and α-induction for nets of subfactors I [J].
Bockenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :361-386
[4]   Modular invariants, graphs and α-induction for nets of subfactors.: II [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :57-103
[6]  
DIJKGRAAF R, 1989, COMMUN MATH PHYS, V123, P429
[7]   On quantum Galois theory [J].
Dong, CY ;
Mason, G .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) :305-321
[8]   Rank one lattice type vertex operator algebras and their automorphism groups -: II.: E-series [J].
Dong, CY ;
Griess, RL ;
Ryba, A .
JOURNAL OF ALGEBRA, 1999, 217 (02) :701-710
[9]   Representations of vertex operator algebra VL+ for rank one lattice L [J].
Dong, CY ;
Nagatomo, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 202 (01) :169-195
[10]  
Frenkel I., 1988, VERTEX OPERATOR ALGE