This work presents the design and evaluation of a planar device for microwave heating of liquids in continuous microfluidics (CMF) made in polydimethylsiloxane (PDMS). It deals with volumes in the mu L range, which are of high interest and relevance to biologists and chemists. The planar heater in this work is conceived around a complementary split-ring resonator (CSRR) topology that offers a desired electric field direction to-and interaction with-liquids in a microwell. The designed device on a 0.25 mm thick Rogers RO4350B substrate operates at around 2.5 GHz, while a CMF channel and a 2.45 mu L microwell are manufactured in PDMS using the casting process. The evaluation of the performance of the designed heater is conducted using a fluorescent dye, Rhodamine B, dissolved in deionized water. Heating measurements are carried out using 1 W of power and the designed device achieves a temperature of 47 degrees C on a sample volume of 2.45 mu L after 20 s of heating. Based on the achieved results, the CSRR topology has a large potential in microwave heating, in addition to the already demonstrated potential in microwave dielectric sensing, all proving the multifunctionality and reusability of single planar microwave-microfluidic devices.