Reproducing kernels, de Branges-Rovnyak spaces, and norms of weighted composition operators

被引:29
作者
Jury, Michael T. [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32603 USA
关键词
D O I
10.1090/S0002-9939-07-08931-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the norm of a weighted composition operator on the Hardy space H-2 of the disk is controlled by the norm of the weight function in the de Branges- Rovnyak space associated to the symbol of the composition operator. As a corollary we obtain a new proof of the boundedness of composition operators on H-2 and recover the standard upper bound for the norm. Similar arguments apply to weighted Bergman spaces. We also show that the positivity of a generalized de Branges- Rovnyak kernel is sufficient for the boundedness of a given composition operator on the standard function spaces on the unit ball.
引用
收藏
页码:3669 / 3675
页数:7
相关论文
共 10 条
[1]  
BARBARA D, 1985, MICH MATH J, V32, P237
[2]  
CARL C, 2000, ACTA SCI MATH SZEGED, V66, P351
[3]  
CARL C, 1995, STUDEIS ADV MATH
[4]  
de Branges L., 1966, SQUARE SUMMABLE POWE
[5]  
ERIC A, 1968, CAN J MATH, V20, P442
[6]  
JOSEPH A, 1984, P AM MATH SOC, V91, P217
[7]  
MANUEL DC, 2001, J MATH ANAL APPL, V263, P224
[8]  
McCarthy J.E, 2002, GRADUATE STUDIES MAT, V44
[9]  
Sarason D. E., 1994, LECT NOTES MATH SCI, V10
[10]   Commutant lifting and factorization of reproducing kernels [J].
Shimorin, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (01) :134-159