Ag Nanorod Arrays for SERS: Aspects of Spectral Reproducibility, Surface Contamination, and Spectral Sensitivity

被引:23
作者
Subr, Martin [1 ]
Petr, Martin [2 ]
Peksa, Vlastimil [1 ]
Kylian, Ondrej [2 ]
Hanus, Jan [2 ]
Prochazka, Marek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Phys, Prague 12116, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Dept Macromol Phys, CR-18000 Prague, Czech Republic
关键词
SILVER; METALATION; REMOVAL; WATER;
D O I
10.1155/2015/729231
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ag nanorod arrays prepared by oblique angle vapor deposition (OAD) represent regular, large area substrates for surface-enhanced Raman scattering (SERS) spectroscopy. We studied uniformity and spectral reproducibility of silver OAD-fabricated substrates (AgOADs) by spectral mapping of methylene blue. The results demonstrate good reproducibility apart from occasional "hot-spot" sites where the intensity is higher. The number of "hot-spots" represents 2%-6% of SERS-active sites of mapping substrate area. We were able to obtain good SERS spectra of testing amino acid tryptophan at 1 x 10(-5) M concentration and three different free-base porphyrins down to similar to 10(-7) M concentration. We found out that keeping the AgOADs in a vacuum chamber overnight prevents the surface from binding any contaminants from the ambient atmosphere, without significant reduction in the SERS enhancement. Such substrates provide stable SERS enhancement even when stored for 1 year after preparation.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J].
Banholzer, Matthew J. ;
Millstone, Jill E. ;
Qin, Lidong ;
Mirkin, Chad A. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) :885-897
[2]   Recent progress in SERS biosensing [J].
Bantz, Kyle C. ;
Meyer, Audrey F. ;
Wittenberg, Nathan J. ;
Im, Hyungsoon ;
Kurtulus, Ozge ;
Lee, Si Hoon ;
Lindquist, Nathan C. ;
Oh, Sang-Hyun ;
Haynes, Christy L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (24) :11551-11567
[3]   Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates [J].
Chaney, SB ;
Shanmukh, S ;
Dluhy, RA ;
Zhao, YP .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[4]   Raman scattering of L-tryptophan enhanced by surface plasmon of silver nanoparticles: vibrational assignment and structural determination [J].
Chuang, Chi-Hung ;
Chen, Yit-Tsong .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (02) :150-156
[5]   Surface-enhanced Raman spectroscopy (SERS): progress and trends [J].
Cialla, Dana ;
Maerz, Anne ;
Boehme, Rene ;
Theil, Frank ;
Weber, Karina ;
Schmitt, Michael ;
Popp, Juergen .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 403 (01) :27-54
[6]   A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [J].
Fan, Meikun ;
Andrade, Gustavo F. S. ;
Brolo, Alexandre G. .
ANALYTICA CHIMICA ACTA, 2011, 693 (1-2) :7-25
[7]  
Hanzlikova J, 1998, J RAMAN SPECTROSC, V29, P575, DOI 10.1002/(SICI)1097-4555(199807)29:7<575::AID-JRS259>3.0.CO
[8]  
2-C
[9]   ELECTROCHEMICAL PROCESSES OF MESO-TETRAKIS(4-SULFONATOPHENYL)PORPHINE AT A SILVER ELECTRODE STUDIED BY SURFACE-ENHANCED RESONANCE RAMAN-SPECTROSCOPY [J].
ITABASHI, M ;
KATO, K ;
ITOH, K .
CHEMICAL PHYSICS LETTERS, 1983, 97 (06) :528-532
[10]  
LeRu EC, 2009, PRINCIPLES OF SURFACE-ENHANCED RAMAN SPECTROSCOPY: AND RELATED PLASMONIC EFFECTS, P1