The Influence of Ultrathin Amorphous ALD Alumina and Titania on the Rate Capability of Anatase TiO2 and LiMn2O4 Lithium Ion Battery Electrodes

被引:59
作者
Mattelaer, Felix [1 ]
Vereecken, Philippe M. [2 ,3 ]
Dendooven, Jolien [1 ]
Detavernier, Christophe [1 ]
机构
[1] Univ Ghent, Dept Solid State Sci, Krijgslaan 281 S1, B-9000 Ghent, Belgium
[2] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, B-3001 Leuven, Belgium
关键词
atomic layer deposition; interface modification; lithium ion battery; metal oxide; protective coating; ultrathin films; ATOMIC LAYER DEPOSITION; ELEVATED-TEMPERATURE PERFORMANCES; ELECTROCHEMICAL PERFORMANCE; SURFACE PASSIVATION; CYCLING STABILITY; CATHODE MATERIAL; LI; AL2O3; COATINGS; ANODES;
D O I
10.1002/admi.201601237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interface modification is a heavily investigated method of extending the lifetime of lithium ion batteries. While many studies have explored the effect of interface coating on the lifetime, the rate capability is often overlooked. In this study, the authors investigated the influence of ultrathin (< 10 nm) atomic layer deposition (ALD) coatings of amorphous Al2O3 and amorphous TiO2. It is found that, on thin-film anatase TiO2, the rate capability is unaffected by an amorphous TiO2 coating since it does not pose an additional impedance on the system, while Al2O3 coatings are detrimental for the rate performance due to the 1.5 x 10(12) cm resistivity toward lithium ions. A thicker than 2 nm ALD Al2O3 film is found to block lithium transfer completely, resulting in a purely capacitive film. Solvent oxidation is studied on thin-film LiMn2O4. The authors demonstrate that both coatings can partially solve the solvent decomposition. However, the kinetic bottleneck posed by 1 nm Al2O3 is still greater than the uncoated LiMn2O4, leading to worsened rate capability. ALD TiO2 on the other hand can prevent most of the solvent decomposition, resulting in smoother electrodes. The absence of the decomposition layer and lithium conducting properties of the ALD TiO2 films results in an improved rate capability for the ALD TiO2 coated electrode.
引用
收藏
页数:11
相关论文
共 74 条
[1]   Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes [J].
Ahmed, B. ;
Shahid, Muhammad ;
Nagaraju, D. H. ;
Anjum, D. H. ;
Hedhili, Mohamed N. ;
Alshareef, H. N. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (24) :13154-13163
[2]   Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage [J].
Ahmed, Bilal ;
Xia, Chuan ;
Alshareef, Husam N. .
NANO TODAY, 2016, 11 (02) :250-271
[3]   Extended lithium titanate cycling potential window with near zero capacity loss [J].
Ahn, Dongjoon ;
Xiao, Xingcheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (08) :796-799
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[6]   Molecular Layer Deposition for Surface Modification of Lithium-Ion Battery Electrodes [J].
Ban, Chunmei ;
George, Steven M. .
ADVANCED MATERIALS INTERFACES, 2016, 3 (21)
[7]   Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load [J].
Barsoukov, E ;
Kim, JH ;
Yoon, CO ;
Lee, H .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :61-70
[8]   Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation [J].
Basch, Angelika ;
Albering, Joerg H. .
JOURNAL OF POWER SOURCES, 2011, 196 (06) :3290-3295
[9]   Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina [J].
Bettge, Martin ;
Li, Yan ;
Sankaran, Bharat ;
Rago, Nancy Dietz ;
Spila, Timothy ;
Haasch, Richard T. ;
Petrov, Ivan ;
Abraham, Daniel P. .
JOURNAL OF POWER SOURCES, 2013, 233 :346-357
[10]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946