A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems

被引:10
作者
Company, Rafael [1 ]
Egorova, Vera N. [2 ]
Jodar, Lucas [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Cantabria, Dept Matemat Aplicada & Ciencias Computac, Avda Castros S-N, Santander 39005, Spain
关键词
American option pricing; Front-fixing method; Exponential time differencing; Finite difference methods; Experimental numerical analysis; Gauss quadrature; FINITE-DIFFERENCE SCHEME; STOCHASTIC VOLATILITY; IMPLICIT; MODEL;
D O I
10.1016/j.matcom.2020.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
American options prices under jump-diffusion models are determined by a free boundary partial integro-differential equation (PIDE) problem. In this paper, we propose a front-fixing exponential time differencing (FF-ETD) method composed of several steps. First, the free boundary is included into equation by applying the front-fixing transformation. Second, the resulting nonlinear PIDE is semi-discretized, that leads to a system of ordinary differential equations (ODEs). Third, a numerical solution of the system is constructed by using exponential time differencing (ETD) method and matrix quadrature rules. Finally, numerical analysis is provided to establish empirical stability conditions on step sizes. Numerical results show the efficiency and competitiveness of the FF-ETD method. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 40 条
[1]  
Andersen L., 2000, REV DERIV RES, V4, P231, DOI DOI 10.1023/A:1011354913068
[2]  
Atkinson KE., 1989, INTRO NUMERICAL ANAL, DOI DOI 10.1002/0471667196.ESS1837
[3]   A fast numerical method to price American options under the Bates model [J].
Ballestra, Luca Vincenzo ;
Cecere, Liliana .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) :1305-1319
[4]   The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach [J].
Ballestra, Luca Vinvenzo ;
Sgarra, Carlo .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) :1571-1590
[5]   Exact simulation of stochastic volatility and other affine jump diffusion processes [J].
Broadie, M ;
Kaya, Ö .
OPERATIONS RESEARCH, 2006, 54 (02) :217-231
[6]   What type of process underlies options? A simple robust test [J].
Carr, P ;
Wu, LR .
JOURNAL OF FINANCE, 2003, 58 (06) :2581-2610
[7]  
Chan R.T.L., 2010, ARXIV10115650
[8]   THE EVALUATION OF AMERICAN OPTION PRICES UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS USING THE METHOD OF LINES [J].
Chiarella, Carl ;
Kang, Boda ;
Meyer, Gunter H. ;
Ziogas, Andrew .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (03) :393-425
[9]   Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing [J].
Company, R. ;
Egorova, V. N. ;
Jodar, L. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[10]   Conditional full stability of positivity-preserving finite difference scheme for diffusion-advection-reaction models [J].
Company, Rafael ;
Egorova, Vera N. ;
Jodar, Lucas .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 :157-168