Single-slice rebinning reconstruction in spiral cone-beam computed tomography

被引:0
|
作者
Bruder, H [1 ]
Kachelriess, M
Schaller, S
Stierstorfer, K
Flohr, T
机构
[1] Siemens Med Engn Grp, D-91052 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Inst Med Phys, D-91052 Erlangen, Germany
关键词
cone artifact; cone-beam CT; contrast resoltion; image noise; single-slice reconstruction; spatial resolution; spiral CT; spiral interpolation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
At the advent of multislice computed tomography (CT) a variety of approximate cone-beam algorithms have been proposed suited for reconstruction of small cone-angle CT data in a spiral mode of operation. The goal of this study is to identify a practical and efficient approximate cone-beam method, extend its potential for medical use, and demonstrate its performance at medium cone-angles required for area detector CT. We will investigate two different approximate single-slice rebinning algorithms for cone-beam CT: the multirow Fourier reconstruction (MFR) [1] and an extension of the advanced single-slice rebinning method (ASSR) [2], [3], which combines the idea of ASSR with a z-filtering approach. Thus, both algorithms, MFR and ASSR, are formulated in the framework of z-filtering using optimized spiral interpolation algorithms. In each view, X-ray samples to he used for reconstruction are identified, which describe an approximation to a virtual reconstruction plane. The performance of approximate reconstruction should improve as the virtual reconstruction plane better fits the spiral focus path. The image quality of the respective reconstruction will be assessed with respect to image artifacts, spatial resolution, contrast resolution, and image noise. It turns out that the ASSR method using tilted reconstruction planes is a practical and efficient algorithm, providing image quality comparable to that of a single-row scanning system even with a 46-row detector at a table feed of 64 mm, Both algorithms tolerate any table feed below the maximum value associated to the detector height. Due to the z-filter approach, all detector data sampled can be used for image reconstruction.
引用
收藏
页码:873 / 887
页数:15
相关论文
共 50 条
  • [21] Cone-beam computed tomography for trauma
    Gupta, Saurabh
    Martinson, James R.
    Ricaurte, Daniel
    Scalea, Thomas M.
    Morrison, Jonathan J.
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2020, 89 (03): : E34 - E40
  • [22] Cone-Beam Computed Tomography in Orthodontics
    Abdelkarim, Ahmad
    DENTISTRY JOURNAL, 2019, 7 (03)
  • [23] Beam hardening correction method for Cone-Beam computed tomography based on reprojection of slice contours
    Key Lab. of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, China
    Yi Qi Yi Biao Xue Bao, 2008, 9 (1873-1877): : 1873 - 1877
  • [24] The effect of voxel size on image reconstruction in cone-beam computed tomography
    Tanimoto, Hideyuki
    Arai, Yoshinori
    ORAL RADIOLOGY, 2009, 25 (02) : 149 - 153
  • [25] Projection matrix acquisition for cone-beam computed tomography iterative reconstruction
    Yang, Fuqiang
    Zhang, Dinghua
    Huang, Kuidong
    Shi, Wenlong
    Zhang, Caixin
    Gao, Zongzhao
    SECOND INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2017, 10256
  • [26] The effect of voxel size on image reconstruction in cone-beam computed tomography
    Hideyuki Tanimoto
    Yoshinori Arai
    Oral Radiology, 2009, 25 : 149 - 153
  • [27] Dual-slice spiral versus single-slice spiral scanning: Comparison of the physical performance of two computed tomography scanners - Response
    Liang, Y
    Kruger, RA
    MEDICAL PHYSICS, 1996, 23 (11) : 1865 - 1865
  • [28] Characteristics of noise and resolution on image reconstruction in cone-beam computed tomography
    Lee, Seung-Wan
    Kim, Hee-Joung
    Lee, Chang-Lae
    Cho, Hyo-Min
    Park, Hye-Suk
    Kim, Dae-Hong
    Choi, Yu-No
    Ryu, Hyun-Ju
    MEDICAL IMAGING 2011: PHYSICS OF MEDICAL IMAGING, 2011, 7961
  • [29] Comparison of radiation dose for implant imaging using conventional spiral tomography, computed tomography, and cone-beam computed tomography
    Chau, Anson C. M.
    Fung, Karl
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTOLOGY, 2009, 107 (04): : 559 - 565
  • [30] Kilovoltage cone-beam computed tomography imaging dose estimation and optimization: Need of daily cone-beam computed tomography
    Trivedi, Gaurav
    Dixit, Chandra K.
    Oinam, Arun S.
    Kapoor, Rakesh
    Bahl, Amit
    JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2019, 15 (03) : 470 - 474