Identification of the relevant input variables for predicting the parabolic trough solar collector's outlet temperature using an artificial neural network and a multiple linear regression model

被引:12
作者
Ajbar, Wassila [1 ]
Parrales, A. [2 ]
Silva-Martinez, S. [3 ]
Bassam, A. [4 ]
Jaramillo, O. A. [5 ]
Hernandez, J. A. [3 ]
机构
[1] Univ Autonoma Estado Morelos UAEM, Posgrad Ingn Ciencias & Aplicadas CIICAp, Av Univ 1001,Col Chamilpa, Cuernavaca 60209, Morelos, Mexico
[2] Univ Autonoma Estado Morelos, CONACyT Ctr Invest Ingenieria & Ciencias Aplicada, Av Univ 1001,Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[3] Univ Autonoma Estado Morelos UAEM, Ctr Invest Ingenieria & Ciencias Aplicadas CIICAp, Av Univ 1001,Col Chamilpa, Cuernavaca 60209, Morelos, Mexico
[4] Univ Autonoma Yucat an, Fac Ingn, Av Ind Contaminantes S-N, Merida 97310, Yucatan, Mexico
[5] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Privada Xochicalco S-N,Col Azteca, Temixco 62580, Morelos, Mexico
关键词
PERFORMANCE; ANN; SYSTEM; ENERGY; TUBE;
D O I
10.1063/5.0055992
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main objective of this study is to present the most influencing input variables for a parabolic trough solar collector (PTSC) outlet temperature through prediction and optimization. Six artificial neural network (ANN) and four multiple linear regression (MLR) models were proposed, validated, and compared in detail. Temperature, wind speed, rim angle, flow rate, and solar radiation were used as input variables. The simulation showed that ANN-1 and MLR with Second-Order Equation (SOE) are the models that yielded the best results with R-2 = 0.9984 and R-2 = 0.9958 and with an RMSE = 0.7708 and 1.6031, respectively. The sensitivity analysis results of the ANN-1 model trained, with and without biases, showed that the inlet temperature was the most significant parameter influencing the PTSC outlet temperature. Both models yielding the best results were inverted to estimate the optimal input parameter using the trust-region reflective algorithm optimization method. The optimization results showed that ANNi and MLR-SOEi estimated the input temperature with an error< 4.008% and had a very short-elapsed prediction time <0.2277 s. Due to high accuracy and short computing time, ANN-1 and ANNi are more suitable than MLR-SOE for simulating and optimizing the PTSC outlet temperature. Likewise, the MLR-SOE method proved to be a simpler and cheaper alternative than the ANN method. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 54 条
  • [11] Despagne F, 1998, ANALYST, V123, p157R
  • [12] Duffie JA, 2013, SOLAR ENGINEERING OF THERMAL PROCESSES, 4TH EDITION, P1, DOI 10.1002/9781118671603
  • [13] Duffie JA, 2020, Solar engineering of thermal processes, photovoltaics and wind
  • [14] Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector
    Ebrahimi-Moghadam, Amir
    Mohseni-Gharyehsafa, Behnam
    Farzaneh-Gord, Mahmood
    [J]. RENEWABLE ENERGY, 2018, 129 : 473 - 485
  • [15] The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process
    Elmolla, Emad S.
    Chaudhuri, Malay
    Eltoukhy, Mohamed Meselhy
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2010, 179 (1-3) : 127 - 134
  • [16] Validation of a multiple linear regression model for CIGSSe photovoltaic module performance and Pmpp prediction
    Farias-Basulto, G. A.
    Reyes-Figueroa, P.
    Ulbrich, C.
    Szyszka, B.
    Schlatmann, R.
    Klenk, R.
    [J]. SOLAR ENERGY, 2020, 208 : 859 - 865
  • [17] Garson G.D., 1991, AI Expet., V6, P46
  • [18] Performance of solar powered cooling system using Parabolic Trough Collector in UAE
    Ghaith, Fadi A.
    Razzaq, Haseeb-ul-Hassan
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2017, 23 : 21 - 32
  • [19] Application of ANN technique to predict the performance of solar collector systems - A review
    Ghritlahre, Harish Kumar
    Prasad, Radha Krishna
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 84 : 75 - 88
  • [20] Haykin S., 1994, Neural networks: A comprehensive foundation