Application and validation of a line-source dispersion model to estimate small scale traffic-related particulate matter concentrations across the conterminous US

被引:11
作者
Yanosky, Jeff D. [1 ]
Fisher, Jared [2 ]
Liao, Duanping [1 ]
Rim, Donghyun [3 ]
Vander Wal, Randy [4 ,5 ]
Groves, William [4 ,5 ]
Puett, Robin C. [6 ]
机构
[1] Penn State Univ, Coll Med, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[2] Univ Maryland, Sch Publ Hlth, Dept Epidemiol & Biostat, College Pk, MD USA
[3] Penn State Univ, Coll Engn, Dept Architectural Engn, State Coll, PA USA
[4] Penn State Univ, Coll Earth & Mineral Sci, John & Willie Leone Family Dept Energy & Mineral, State Coll, PA USA
[5] Penn State Univ, Coll Earth & Mineral Sci, EMS Energy Inst, State Coll, PA USA
[6] Univ Maryland, Sch Publ Hlth, Maryland Inst Appl Environm Hlth, College Pk, MD USA
基金
美国国家卫生研究院;
关键词
Air pollution; Spatial smoothing; Highway proximity; Traffic counts; Dispersion models; AIR-POLLUTION EXPOSURE; LONG-TERM EXPOSURE; RESIDENTIAL EXPOSURE; NURSES HEALTH; ALL-CAUSE; MORTALITY; PM2.5; ASSOCIATION; PM10;
D O I
10.1007/s11869-018-0580-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Numerous studies document increased health risks from exposure to traffic and traffic-related particulate matter (PM). However, many studies use simple exposure metrics to represent traffic-related PM, and/or are limited to small geographic areas over relatively short (e.g., 1 year) time periods. We developed a modeling approach for the conterminous US from 1999 to 2011 that applies a line-source Gaussian plume dispersion model using several spatially and/or temporally varying inputs (including daily meteorology) to produce high spatial resolution estimates of primary near-road traffic-related PM levels. We compared two methods of spatially averaging traffic counts: spatial smoothing generalized additive models and kernel density. Also, we evaluated and validated the output from the line-source dispersion modeling approach in a spatio-temporal model of 24-h average PM < 2.5 mu m (PM2.5) elemental carbon (EC) levels. We found that spatial smoothing of traffic count point data performed better than a kernel density approach. Predictive accuracy of the spatio-temporal model of PM2.5 EC levels was moderate for 24-h averages (cross-validation (CV) R (2) = 0.532) and higher for longer averaging times (CV R (2) = 0.707 and 0.795 for monthly and annual averages, respectively). PM2.5 EC levels increased monotonically with line-source dispersion model output. Predictive accuracy was higher when the spatio-temporal model of PM2.5 EC included line-source dispersion model output compared to distance to road terms. Our approach provides estimates of primary traffic-related PM levels with high spatial resolution across the conterminous US from 1999 to 2011. Spatio-temporal model predictions describe 24-h average PM2.5 EC levels at unmeasured locations well, especially over longer averaging times.
引用
收藏
页码:741 / 754
页数:14
相关论文
共 36 条
  • [1] The moving-window Bayesian maximum entropy framework: estimation of PM2.5 yearly average concentration across the contiguous United States
    Akita, Yasuyuki
    Chen, Jiu-Chiuan
    Serre, Marc L.
    [J]. JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2012, 22 (05) : 496 - 501
  • [2] Anderson JO, 2012, J MED TOXICOL, V8, P166, DOI 10.1007/s13181-011-0203-1
  • [3] The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies
    Arain, M. A.
    Blair, R.
    Finkelstein, N.
    Brook, J. R.
    Sahsuvaroglu, T.
    Beckerman, B.
    Zhang, L.
    Jerrett, M.
    [J]. ATMOSPHERIC ENVIRONMENT, 2007, 41 (16) : 3453 - 3464
  • [4] Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project
    Beelen, Rob
    Raaschou-Nielsen, Ole
    Stafoggia, Massimo
    Andersen, Zorana Jovanovic
    Weinmayr, Gudrun
    Hoffmann, Barbara
    Wolf, Kathrin
    Samoli, Evangelia
    Fischer, Paul
    Nieuwenhuijsen, Mark
    Vineis, Paolo
    Xun, Wei W.
    Katsouyanni, Klea
    Dimakopoulou, Konstantina
    Oudin, Anna
    Forsberg, Bertil
    Modig, Lars
    Havulinna, Aki S.
    Lanki, Timo
    Turunen, Anu
    Oftedal, Bente
    Nystad, Wenche
    Nafstad, Per
    De Faire, Ulf
    Pedersen, Nancy L.
    Ostenson, Claes-Goeran
    Fratiglioni, Laura
    Penell, Johanna
    Korek, Michal
    Pershagen, Goeran
    Eriksen, Kirsten Thorup
    Overvad, Kim
    Ellermann, Thomas
    Eeftens, Marloes
    Peeters, Petra H.
    Meliefste, Kees
    Wang, Meng
    Bueno-de-Mesquita, Bas
    Sugiri, Dorothea
    Kraemer, Ursula
    Heinrich, Joachim
    de Hoogh, Kees
    Key, Timothy
    Peters, Annette
    Hampel, Regina
    Concin, Hans
    Nagel, Gabriele
    Ineichen, Alex
    Schaffner, Emmanuel
    Probst-Hensch, Nicole
    [J]. LANCET, 2014, 383 (9919) : 785 - 795
  • [5] A REVIEW OF THE DEVELOPMENT AND APPLICATION OF THE CALINE3 AND CALINE4 MODELS
    BENSON, PE
    [J]. ATMOSPHERIC ENVIRONMENT PART B-URBAN ATMOSPHERE, 1992, 26 (03): : 379 - 390
  • [6] A National Prediction Model for PM2.5 Component Exposures and Measurement Error-Corrected Health Effect Inference
    Bergen, Silas
    Sheppard, Lianne
    Sampson, Paul D.
    Kim, Sun-Young
    Richards, Mark
    Vedal, Sverre
    Kaufman, Joel D.
    Szpiro, Adam A.
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2013, 121 (09) : 1017 - 1025
  • [7] Development of a new method to estimate the regional and local contributions to black carbon
    Brochu, Paul J.
    Kioumourtzoglou, Marianthi-Anna
    Coull, Brent A.
    Hopke, Philip K.
    Suh, Helen H.
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (40) : 7681 - 7687
  • [8] BRUGGE D, 2013, ENV HLTH, V12
  • [9] Draper D, 2006, TECHNICAL REPORT
  • [10] Residential Traffic-Related Pollution Exposures and Exhaled Nitric Oxide in the Children's Health Study
    Eckel, Sandrah P.
    Berhane, Kiros
    Salam, Muhammad T.
    Rappaport, Edward B.
    Linn, William S.
    Bastain, Theresa M.
    Zhang, Yue
    Lurmann, Frederick
    Avol, Edward L.
    Gilliland, Frank D.
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2011, 119 (10) : 1472 - 1477