Multiplicity results for a class of fractional differential equations with impulse

被引:2
作者
Zhao, Yulin [1 ]
Shi, Xiaoyan [1 ]
Chen, Haibo [2 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
基金
中国国家自然科学基金;
关键词
Fractional differential equation; Nontrivial solution; Morse theory; Impulsive effects; BOUNDARY-VALUE-PROBLEMS; NONTRIVIAL SOLUTIONS; P-LAPLACIAN; EXISTENCE; SYSTEMS;
D O I
10.1186/s13662-018-1783-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply Morse theory, local linking arguments and the Clark theorem to a study of the multiplicity of nontrivial solutions for a class of impulsive fractional differential equations with Dirichlet boundary conditions.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] Some results for impulsive problems via Morse theory
    Agarwal, Ravi P.
    Bhaskar, T. Gnana
    Perera, Kanishka
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 752 - 759
  • [2] Ait-Mahiout K, 2016, TOPOL METHOD NONL AN, V47, P219
  • [3] [Anonymous], 2006, IMPULSIVE DIFFERENTI
  • [4] [Anonymous], 1999, Fractional Differential Equations
  • [5] Existence of solutions to boundary value problem for impulsive fractional differential equations
    Bonanno, Gabriele
    Rodriguez-Lopez, Rosana
    Tersian, Stepan
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 717 - 744
  • [6] Chang K.-c., 1993, Progress in Nonlinear Differential Equations and their Applications, V6
  • [7] Multiplicity results for superlinear boundary value problems with impulsive effects
    D'Agui, Giuseppina
    Di Bella, Beatrice
    Tersian, Stepan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (05) : 1060 - 1068
  • [8] On the concept and existence of solution for impulsive fractional differential equations
    Feckan, Michal
    Zhou, Yong
    Wang, JinRong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 3050 - 3060
  • [9] Infinitely many solutions for perturbed impulsive fractional differential systems
    Heidarkhani, Shapour
    Zhao, Yulin
    Caristi, Giuseppe
    Afrouzi, Ghasem A.
    Moradi, Shahin
    [J]. APPLICABLE ANALYSIS, 2017, 96 (08) : 1401 - 1424
  • [10] EXISTENCE RESULTS FOR FRACTIONAL BOUNDARY VALUE PROBLEM VIA CRITICAL POINT THEORY
    Jiao, Feng
    Zhou, Yong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):