Multiplicity results for a class of fractional differential equations with impulse

被引:2
作者
Zhao, Yulin [1 ]
Shi, Xiaoyan [1 ]
Chen, Haibo [2 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equation; Nontrivial solution; Morse theory; Impulsive effects; BOUNDARY-VALUE-PROBLEMS; NONTRIVIAL SOLUTIONS; P-LAPLACIAN; EXISTENCE; SYSTEMS;
D O I
10.1186/s13662-018-1783-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply Morse theory, local linking arguments and the Clark theorem to a study of the multiplicity of nontrivial solutions for a class of impulsive fractional differential equations with Dirichlet boundary conditions.
引用
收藏
页数:9
相关论文
共 26 条
[1]   Some results for impulsive problems via Morse theory [J].
Agarwal, Ravi P. ;
Bhaskar, T. Gnana ;
Perera, Kanishka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :752-759
[2]  
Ait-Mahiout K, 2016, TOPOL METHOD NONL AN, V47, P219
[3]  
[Anonymous], 2006, IMPULSIVE DIFFERENTI
[4]  
[Anonymous], 1999, Fractional Differential Equations
[5]   Existence of solutions to boundary value problem for impulsive fractional differential equations [J].
Bonanno, Gabriele ;
Rodriguez-Lopez, Rosana ;
Tersian, Stepan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) :717-744
[6]  
Chang K.-c., 1993, Progress in Nonlinear Differential Equations and their Applications, V6
[7]   Multiplicity results for superlinear boundary value problems with impulsive effects [J].
D'Agui, Giuseppina ;
Di Bella, Beatrice ;
Tersian, Stepan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (05) :1060-1068
[8]   On the concept and existence of solution for impulsive fractional differential equations [J].
Feckan, Michal ;
Zhou, Yong ;
Wang, JinRong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) :3050-3060
[9]   Infinitely many solutions for perturbed impulsive fractional differential systems [J].
Heidarkhani, Shapour ;
Zhao, Yulin ;
Caristi, Giuseppe ;
Afrouzi, Ghasem A. ;
Moradi, Shahin .
APPLICABLE ANALYSIS, 2017, 96 (08) :1401-1424
[10]   EXISTENCE RESULTS FOR FRACTIONAL BOUNDARY VALUE PROBLEM VIA CRITICAL POINT THEORY [J].
Jiao, Feng ;
Zhou, Yong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)