Noetherian algebras of finite self-injective dimension

被引:2
作者
Abe, Hiroki [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba 3058571, Japan
关键词
derived equivalence; dualizing complex; noetherian algebra; tilting complex;
D O I
10.1080/00927870701718773
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative noetherian ring and A a noetherian R-algebra. Take a minimal injective resolution R -> I-center dot and set V-center dot = Hom(R)(center dot) (A, I-center dot). We deal with the case where V-center dot is a dualizing complex for A. We show that A itself is a dualizing complex for A if and only if V-center dot is isomorphic to a tilting complex in D(Mod-A) and that if A is a dualizing complex for A, then - circle times(A)(L) V-center dot induces a self-equivalence of D-b (mod-A).
引用
收藏
页码:493 / 507
页数:15
相关论文
共 12 条
[1]  
Auslander M., 1969, MEM AM MATH SOC, V94
[2]  
BOKSTEDT M, 1993, COMPOS MATH, V86, P209
[3]  
Cartan H., 1956, HOMOLOGICAL ALGEBRA
[4]   DERIVED CATEGORIES AND MORITA THEORY [J].
CLINE, E ;
PARSHALL, B ;
SCOTT, L .
JOURNAL OF ALGEBRA, 1986, 104 (02) :397-409
[5]  
Happel D., 1988, TRIANGULATED CATEGOR
[6]  
Hartshorne R., 1966, LECT NOTES MATH, V20
[7]   On derived equivalent coherent rings [J].
Kato, Y .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) :4437-4454
[8]  
MATSUMURA H, 1986, COMMUTATIVE RING THE
[9]   TILTING MODULES OF FINITE PROJECTIVE DIMENSION [J].
MIYASHITA, Y .
MATHEMATISCHE ZEITSCHRIFT, 1986, 193 (01) :113-146
[10]   MORITA THEORY FOR DERIVED CATEGORIES [J].
RICKARD, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 :436-456