Uninformed Bayesian quantum thermometry

被引:16
作者
Boeyens, Julia [1 ]
Seah, Stella [2 ]
Nimmrichter, Stefan [1 ]
机构
[1] Univ Siegen, Nat Wissenschaftlich Tech Fak, D-57068 Siegen, Germany
[2] Univ Geneva, Dept Phys Appl, CH-1211 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1103/PhysRevA.104.052214
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the Bayesian approach to thermometry with no prior knowledge about the expected temperature scale, through the example of energy measurements on fully or partially thermalized qubit probes. We show that the most common Bayesian estimators, namely the mean and the median, lead to high-temperature divergences when used for uninformed thermometry. To circumvent this and achieve better overall accuracy, we propose two new estimators based on an optimization of relative deviations. Their global temperature-averaged behavior matches a modified van Trees bound, which complements the Cramer-Rao bound for smaller probe numbers and unrestricted temperature ranges. Furthermore, we show that, using partially thermalized probes, one can increase the range of temperatures to which the thermometer is sensitive at the cost of the local accuracy.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Quantum thermometry by single-qubit dephasing [J].
Razavian, Sholeh ;
Benedetti, Claudia ;
Bina, Matteo ;
Akbari-Kourbolagh, Yahya ;
Paris, Matteo G. A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06)
[42]  
Rosenkrantz R. D, 1989, PAPERS PROBABILITY S, P149
[43]   Global Quantum Thermometry [J].
Rubio, Jesus ;
Anders, Janet ;
Correa, Luis A. .
PHYSICAL REVIEW LETTERS, 2021, 127 (09)
[44]   Light Scattering for Thermometry of Fermionic Atoms in an Optical Lattice [J].
Ruostekoski, J. ;
Foot, C. J. ;
Deb, A. B. .
PHYSICAL REVIEW LETTERS, 2009, 103 (17)
[45]   Collisional Quantum Thermometry [J].
Seah, Stella ;
Nimmrichter, Stefan ;
Grimmer, Daniel ;
Santos, Jader P. ;
Scarani, Valerio ;
Landi, Gabriel T. .
PHYSICAL REVIEW LETTERS, 2019, 123 (18)
[46]  
Sekatski P., ARXIV210704425
[47]   Surpassing the thermal Cramer-Rao bound with collisional thermometry [J].
Shu, Angeline ;
Seah, Stella ;
Scarani, Valerio .
PHYSICAL REVIEW A, 2020, 102 (04)
[48]   Quantum limits of thermometry [J].
Stace, Thomas M. .
PHYSICAL REVIEW A, 2010, 82 (01)
[49]   Efficient Bayesian Phase Estimation [J].
Wiebe, Nathan ;
Granade, Chris .
PHYSICAL REVIEW LETTERS, 2016, 117 (01)
[50]   Dissipative adiabatic measurements: Beating the quantum Cramer-Rao bound [J].
Zhang, Da-Jian ;
Gong, Jiangbin .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)