Connecting toric manifolds by conical Kahler-Einstein metrics

被引:7
作者
Datar, Ved [1 ]
Guo, Bin [2 ]
Song, Jian [3 ]
Wang, Xiaowei [4 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Conical Kahler-Einstein metrics; Toric manifolds; MONGE-AMPERE EQUATIONS; GREATEST LOWER BOUNDS; RICCI CURVATURE; SINGULARITIES; VARIETIES; FACTORIZATION; STABILITY; LIMITS;
D O I
10.1016/j.aim.2017.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give criterions for the existence of toric conical Kahler-Einstein and Kahler-Ricci soliton metrics on any toric manifold in relation to the greatest Ricci and Bakry-Emery-Ricci lower bound. We also show that any two toric manifolds with the same dimension can be joined by a continuous path of toric manifolds with conical Kahler Einstein metrics in the Gromov-Hausdorff topology. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 83
页数:46
相关论文
共 50 条
[41]   On the boundary behavior of Kahler-Einstein metrics on log canonical pairs [J].
Guenancia, Henri ;
Wu, Damin .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :101-120
[42]   OPTIMAL BOUNDS FOR THE VOLUMES OF KAHLER-EINSTEIN FANO MANIFOLDS [J].
Fujita, Kento .
AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) :391-414
[43]   Calabi type functionals for coupled Kahler-Einstein metrics [J].
Nakamura, Satoshi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 64 (02)
[44]   Continuity of delta invariants and twisted Kahler-Einstein metrics [J].
Zhang, Kewei .
ADVANCES IN MATHEMATICS, 2021, 388
[45]   Residue formula for an obstruction to coupled Kahler-Einstein metrics [J].
Futaki, Akito ;
Zhang, Yingying .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (02) :389-401
[46]   Kahler-Einstein metrics and algebraic structures on limit spaces [J].
Donaldson, Simon .
ADVANCES IN GEOMETRY AND MATHEMATICAL PHYSICS, 2016, 21 :85-94
[47]   SYMMETRIC AND KAHLER-EINSTEIN FANO POLYGONS [J].
Hwang, Dongseon ;
Kim, Yeonsu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) :1251-1262
[48]   Kahler-Einstein Metrics on Q-Smoothable Fano Varieties, Their Moduli and Some Applications [J].
Spotti, Cristiano .
COMPLEX AND SYMPLECTIC GEOMETRY, 2017, 21 :211-229
[49]   Generalized Matsushima's theorem and Kahler-Einstein cone metrics [J].
Li, Long ;
Zheng, Kai .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[50]   Variation of singular Kahler-Einstein metrics: Positive Kodaira dimension [J].
Cao, Junyan ;
Guenancia, Henri ;
Paun, Mihai .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 779 :1-36