Connecting toric manifolds by conical Kahler-Einstein metrics

被引:7
作者
Datar, Ved [1 ]
Guo, Bin [2 ]
Song, Jian [3 ]
Wang, Xiaowei [4 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Conical Kahler-Einstein metrics; Toric manifolds; MONGE-AMPERE EQUATIONS; GREATEST LOWER BOUNDS; RICCI CURVATURE; SINGULARITIES; VARIETIES; FACTORIZATION; STABILITY; LIMITS;
D O I
10.1016/j.aim.2017.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give criterions for the existence of toric conical Kahler-Einstein and Kahler-Ricci soliton metrics on any toric manifold in relation to the greatest Ricci and Bakry-Emery-Ricci lower bound. We also show that any two toric manifolds with the same dimension can be joined by a continuous path of toric manifolds with conical Kahler Einstein metrics in the Gromov-Hausdorff topology. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 83
页数:46
相关论文
共 50 条
[31]   Generalized Kahler-Einstein Metrics and Energy Functionals [J].
Zhang, Xi ;
Zhang, Xiangwen .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (06) :1413-1435
[32]   KAHLER-EINSTEIN METRICS ON FANO MANIFOLDS. I: APPROXIMATION OF METRICS WITH CONE SINGULARITIES [J].
Chen, Xiuxiong ;
Donaldson, Simon ;
Sun, Song .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (01) :183-197
[33]   GENERALIZED KAHLER EINSTEIN METRICS AND UNIFORM STABILITY FOR TORIC FANO MANIFOLDS [J].
Nakamura, Satoshi .
TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (04) :525-532
[34]   Deformation for coupled Kahler-Einstein metrics [J].
Nakamura, Satoshi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (03) :933-947
[35]   Extremal Kahler Metrics of Toric Manifolds [J].
Li, An-Min ;
Sheng, Li .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (06) :827-836
[36]   Smooth approximation of twisted Kahler-Einstein metrics [J].
Jin, Lize ;
Wang, Feng .
ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
[37]   GEOMETRIC QUANTIZATION OF COUPLED KAHLER-EINSTEIN METRICS [J].
Takahashi, Ryosuke .
ANALYSIS & PDE, 2021, 14 (06) :1817-1849
[38]   Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties [J].
Berman, Robert J. ;
Boucksom, Sebastien ;
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 :27-89
[39]   Kahler-Einstein metrics: From cones to cusps [J].
Guenancia, Henri .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 :1-27
[40]   On the boundary behavior of Kahler-Einstein metrics on log canonical pairs [J].
Guenancia, Henri ;
Wu, Damin .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :101-120