Connecting toric manifolds by conical Kahler-Einstein metrics

被引:7
作者
Datar, Ved [1 ]
Guo, Bin [2 ]
Song, Jian [3 ]
Wang, Xiaowei [4 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Conical Kahler-Einstein metrics; Toric manifolds; MONGE-AMPERE EQUATIONS; GREATEST LOWER BOUNDS; RICCI CURVATURE; SINGULARITIES; VARIETIES; FACTORIZATION; STABILITY; LIMITS;
D O I
10.1016/j.aim.2017.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give criterions for the existence of toric conical Kahler-Einstein and Kahler-Ricci soliton metrics on any toric manifold in relation to the greatest Ricci and Bakry-Emery-Ricci lower bound. We also show that any two toric manifolds with the same dimension can be joined by a continuous path of toric manifolds with conical Kahler Einstein metrics in the Gromov-Hausdorff topology. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 83
页数:46
相关论文
共 50 条
[21]   Families of conic Kahler-Einstein metrics [J].
Guenancia, Henri .
MATHEMATISCHE ANNALEN, 2020, 376 (1-2) :1-37
[22]   Bubbling of Kahler-Einstein metrics [J].
Sun, Song .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) :1317-1348
[23]   On the existence of conic Kahler-Einstein metrics [J].
Tian, Gang ;
Wang, Feng .
ADVANCES IN MATHEMATICS, 2020, 375
[24]   On the Curvature of Conic Kahler-Einstein Metrics [J].
Arezzo, Claudio ;
Della Vedova, Alberto ;
La Nave, Gabriele .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) :265-283
[25]   Complete Kahler-Einstein manifolds [J].
Kuehnel, Marco .
COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 :171-181
[26]   Coupled Kahler-Einstein Metrics [J].
Hultgren, Jakob ;
Nystrom, D. Witt .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (21) :6765-6796
[27]   SINGULAR KAHLER-EINSTEIN METRICS [J].
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (03) :607-639
[28]   On the limit behavior of metrics in the continuity method for the Kahler-Einstein problem on a toric Fano manifold [J].
Li, Chi .
COMPOSITIO MATHEMATICA, 2012, 148 (06) :1985-2003
[29]   Kahler-Einstein metrics, canonical random point processes and birational geometry [J].
Berman, Robert J. .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 :29-73
[30]   K-Stability and Kahler-Einstein Metrics [J].
Tian, Gang M. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (07) :1085-1156