Polynomial numerical hulls of matrices

被引:19
|
作者
Davis, Chandler [2 ]
Li, Chi-Kwong [1 ]
Salemi, Abbas [3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[3] Shahid Bahonar Univ Kerman, Dept Math, Kerman, Iran
基金
美国国家科学基金会;
关键词
polynomial numerical hull; joint numerical range; normal matrix;
D O I
10.1016/j.laa.2007.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any n-by-n complex matrix A, we use the joint numerical range W(A, A(2),..., A(k)) to study the polynomial numerical hull of order k of A, denoted by V-k(A). We give an analytic description of V-2(A) when A is normal. The result is then used to characterize those normal matrices A satisfying V-2 (A) = sigma (A), and to show that a unitary matrix A satisfies V-2 (A) = sigma (A) if and only if its eigenvalues lie in a semicircle, where sigma (A) denotes the spectrum of A. When A = diag(1, w,..., w(n-1)) with w = e(i2 pi/n), we determine V-k(A) for k is an element of {2} boolean OR {j is an element of N: j >= n/2}. We also consider matrices A is an element of M-n such that A(2) is Hermitian. For such matrices we show that V-4(A) is the spectrum of A, and give a description of the set V-2(A). (C) 2007 Published by Elsevier Inc.
引用
收藏
页码:137 / 153
页数:17
相关论文
共 50 条
  • [41] A characterization of binormal matrices
    Ko, Eungil
    Kwon, Hyun-Kyoung
    Lee, Ji Eun
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06) : 1215 - 1228
  • [42] Corners of normal matrices
    Bhatia, Rajendra
    Choi, Man-Duen
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 393 - 399
  • [43] FURTHER INEQUALITIES FOR NORMAL MATRICES
    Zhang, Feng
    Jing, Hefang
    OPERATORS AND MATRICES, 2024, 18 (04): : 881 - 889
  • [44] Normal matrices subordinate to a graph
    Johnson, Charles R.
    Turnansky, Morrison
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 54 - 63
  • [45] A stratification of the set of normal matrices
    Huhtanen, M
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (02) : 349 - 367
  • [46] Normal dilatation of triangular matrices
    Ikramov, KD
    MATHEMATICAL NOTES, 1996, 60 (5-6) : 649 - 657
  • [47] A note on nonnegative normal matrices
    Chen, ZR
    Li, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 279 (1-3) : 281 - 283
  • [48] EIGENVALUE LOCALIZATION FOR COMPLEX MATRICES
    Gumus, Ibrahim Halil
    Hirzallah, Omar
    Kittaneh, Fuad
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 892 - 906
  • [49] On the spread of certain normal matrices
    Fallat, Shaun M.
    Xing, YongJun
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12) : 1391 - 1407
  • [50] Graph representations of normal matrices
    Lee, SG
    Seol, HG
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (01) : 215 - 224