Polynomial numerical hulls of matrices

被引:19
|
作者
Davis, Chandler [2 ]
Li, Chi-Kwong [1 ]
Salemi, Abbas [3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[3] Shahid Bahonar Univ Kerman, Dept Math, Kerman, Iran
基金
美国国家科学基金会;
关键词
polynomial numerical hull; joint numerical range; normal matrix;
D O I
10.1016/j.laa.2007.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any n-by-n complex matrix A, we use the joint numerical range W(A, A(2),..., A(k)) to study the polynomial numerical hull of order k of A, denoted by V-k(A). We give an analytic description of V-2(A) when A is normal. The result is then used to characterize those normal matrices A satisfying V-2 (A) = sigma (A), and to show that a unitary matrix A satisfies V-2 (A) = sigma (A) if and only if its eigenvalues lie in a semicircle, where sigma (A) denotes the spectrum of A. When A = diag(1, w,..., w(n-1)) with w = e(i2 pi/n), we determine V-k(A) for k is an element of {2} boolean OR {j is an element of N: j >= n/2}. We also consider matrices A is an element of M-n such that A(2) is Hermitian. For such matrices we show that V-4(A) is the spectrum of A, and give a description of the set V-2(A). (C) 2007 Published by Elsevier Inc.
引用
收藏
页码:137 / 153
页数:17
相关论文
共 50 条
  • [31] Singular value and norm inequalities involving the numerical radii of matrices
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (01)
  • [32] Classification of joint numerical ranges of three hermitian matrices of size three
    Szymanski, Konrad
    Weis, Stephan
    Zyczkowski, Karol
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 545 : 148 - 173
  • [33] A refinement of Rotfel'd type inequality for partitioned matrices with numerical ranges in a sector
    Yang, Junjian
    Lu, Linzhang
    Chen, Zhen
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (09) : 1719 - 1726
  • [34] On star-centers of some generalized numerical ranges and diagonals of normal matrices
    Cheung, G
    Tsing, NK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 337 (337) : 109 - 119
  • [35] On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block
    Tichy, Petr
    Liesen, Jorg
    Faber, Vance
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 26 : 453 - 473
  • [36] Computing eigenvalues of normal matrices via complex symmetric matrices
    Ferranti, Micol
    Vandebril, Raf
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 281 - 293
  • [37] Normal Toeplitz matrices
    Farenick, DR
    Krupnik, M
    Krupnik, N
    Lee, WY
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) : 1037 - 1043
  • [38] On almost normal matrices
    Ikramov K.D.
    Moscow University Computational Mathematics and Cybernetics, 2011, 35 (1) : 1 - 5
  • [39] On Normal and Binormal Matrices
    Kh. D. Ikramov
    Moscow University Computational Mathematics and Cybernetics, 2023, 47 (1) : 19 - 22
  • [40] Corners of normal matrices
    Rajendra Bhatia
    Man-Duen Choi
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 393 - 399