A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries

被引:50
作者
Shen, Yongqiang [1 ]
Wang, Xianyou [1 ]
Hu, Hai [1 ]
Jiang, Miaoling [1 ]
Yang, Xiukang [1 ]
Shu, Hongbo [1 ]
机构
[1] Xiangtan Univ, Sch Chem, Hunan Prov Key Lab Electrochem Energy Storage & C, Key Lab Environm Friendly Chem & Applicat,Minist, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; Sodium ion batteries; Heterogeneous hydrated iron fluorides; Graphene; Sol-gel methods; EXCELLENT CYCLE PERFORMANCE; ELECTRODE MATERIALS; FACILE PREPARATION; FEF3; LI; NANOPARTICLES; MECHANISM;
D O I
10.1016/j.jpowsour.2015.02.097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A graphene loading heterogeneous hydrated forms iron based fluoride (abbreviated as FeF3 center dot xH(2)O/G) nanocomposite is successfully designed and synthesized for the first time by a sol-gel method. It found that the FeF3 center dot xH(2)O nanoparticles distribute randomly on the surface of the graphene, stacking together to form a nanocomposite with high specific surface and abundant mesporous structure. The FeF3 center dot xH(2)O was consisted of FeF3 center dot xH(2)O and FeF2.5 center dot 0.5H(2)O with pyrochlore phase structure and FeF3.0.33H(2)O with hexagonal-tungsten-bronze-type structure (HTB). The FeF3 center dot xH(2)O/G was used as cathode materials of rechargeable lithium/sodium batteries, respectively. It has been found that it can deliver a large reversible capacity exceeding 200 mAh g(-1) and excellent cyclic performance with a residual capacity of 183 mAh g(-1) after 100 cycles at 0.2C and 149 mAh g(-1) after 200 cycles at 1C, especially, an outstanding rate performance exceeding 130 mAh g(-1) at 5C in the voltage range of 1.5-4.5 V for Li-ion batteries. Moreover, when FeF3 center dot xH(2)O/G is used as cathode material of Na-ion batteries, it exhibits also a high reversible capacity of 101 mAh g(-1) after 30 cycles in the voltage range of 1.0-4.0 V at 0.1C. Therefore, FeF3 center dot xH(2)O/G will a promising cathode material for high-performance lithium/sodium ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 26 条
  • [1] Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices
    Badway, F.
    Mansour, A. N.
    Pereira, N.
    Al-Sharab, J. F.
    Cosandey, F.
    Plitz, I.
    Amatucci, G. G.
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (17) : 4129 - 4141
  • [2] Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode
    Ban, Chunmei
    Wu, Zhuangchun
    Gillaspie, Dane T.
    Chen, Le
    Yan, Yanfa
    Blackburn, Jeffrey L.
    Dillon, Anne C.
    [J]. ADVANCED MATERIALS, 2010, 22 (20) : E145 - +
  • [3] Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
    Cabana, Jordi
    Monconduit, Laure
    Larcher, Dominique
    Rosa Palacin, M.
    [J]. ADVANCED MATERIALS, 2010, 22 (35) : E170 - E192
  • [4] Carlo L. D., 2014, CHEM COMMUN, V50, P460
  • [5] Reduced graphene oxide decorated with FeF3 nanoparticles: Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries
    Chu, Qingxin
    Xing, Zhicai
    Ren, Xinbang
    Asiri, Abdullah M.
    Al-Youbi, Abdulrahman O.
    Alamry, Khalid Ahmad
    Sun, Xuping
    [J]. ELECTROCHIMICA ACTA, 2013, 111 : 80 - 85
  • [6] Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries
    Chu, Qingxin
    Xing, Zhicai
    Tian, Jingqi
    Ren, Xinbang
    Asiri, Abdullah M.
    Al-Youbi, Abdulrahman O.
    Alamry, Khalid Ahmad
    Sun, Xuping
    [J]. JOURNAL OF POWER SOURCES, 2013, 236 : 188 - 191
  • [7] Novel sol-gel prepared zinc fluoride: synthesis, characterisation and acid-base sites analysis
    Guo, Ying
    Wuttke, Stefan
    Vimont, Alexandre
    Daturi, Marco
    Lavalley, Jean-Claude
    Teinz, Katharina
    Kemnitz, Erhard
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (29) : 14587 - 14593
  • [8] Sodiation via Heterogeneous Disproportionation in FeF2 Electrodes for Sodium-Ion Batteries
    He, Kai
    Zhou, Yongning
    Gao, Peng
    Wang, Liping
    Pereira, Nathalie
    Amatucci, Glenn G.
    Nam, Kyung-Wan
    Yang, Xiao-Qing
    Zhu, Yimei
    Wang, Feng
    Su, Dong
    [J]. ACS NANO, 2014, 8 (07) : 7251 - 7259
  • [9] Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries
    Kim, Sung-Wook
    Seo, Dong-Hwa
    Gwon, Hyeokjo
    Kim, Jongsoon
    Kang, Kisuk
    [J]. ADVANCED MATERIALS, 2010, 22 (46) : 5260 - 5264
  • [10] Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles
    Lee, Se-Hee
    Kim, Yong-Hyun
    Deshpande, Rohit
    Parilla, Philip A.
    Whitney, Erin
    Gillaspie, Dane T.
    Jones, Kim M.
    Mahan, A. Harv
    Zhang, Shengbai
    Dillon, Anne C.
    [J]. ADVANCED MATERIALS, 2008, 20 (19) : 3627 - +