Holistic Determination of Optoelectronic Properties using High-Throughput Spectroscopy of Surface-Guided CsPbBr3 Nanowires

被引:8
作者
Church, Stephen A. [1 ,2 ]
Choi, Hoyeon [1 ,2 ]
Al-Amairi, Nawal [1 ,2 ]
Al-Abri, Ruqaiya [1 ,2 ]
Sanders, Ella [3 ]
Oksenberg, Eitan [4 ]
Joselevich, Ernesto [3 ]
Parkinson, Patrick W. [1 ,2 ]
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England
[3] Weizmann Inst Sci, Dept Mat & Interfaces, IL-7610001 Rehovot, Israel
[4] AMOLF, Ctr Nanophoton, NL-1009 DB Amsterdam, Netherlands
基金
以色列科学基金会;
关键词
high-throughput; metal-halide perovskites; energy dynamics; photoluminescence; nanowires; PEROVSKITE NANOWIRES; CARRIER MOBILITIES; PHOTOLUMINESCENCE; STATES;
D O I
10.1021/acsnano.2c01086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optoelectronic micro- and nanostructures have a vast parameter space to explore for modification and optimization of their functional performance. This paper reports on a data-led approach using high-throughput single nanostructure spectroscopy to probe >8000 structures, allowing for holistic analysis of multiple material and optoelectronic parameters with statistical confidence. The methodology is applied to surface-guided CsPbBr3 nanowires, which have complex and interrelated geometric, structural, and electronic properties. Photoluminescence-based measurements, studying both the surface and embedded interfaces, exploits the natural inter nanowire geometric variation to show that increasing the nanowire width reduces the optical bandgap, increases the recombination rate in the nanowire bulk, and reduces the rate at the surface interface. A model of carrier recombination and diffusion ascribes these trends to carrier density and strain effects at the interfaces and self-consistently retrieves values for carrier mobility, trap densities, bandgap, diffusion length, and internal quantum efficiency. The model predicts parameter trends, such as the variation of internal quantum efficiency with width, which is confirmed by experimental verification. As this approach requires minimal a priori information, it is widely applicable to nano- and microscale materials.
引用
收藏
页码:9086 / 9094
页数:9
相关论文
共 35 条
[1]   Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing [J].
Alanis, Juan Arturo ;
Lysevych, Mykhaylo ;
Burgess, Tim ;
Saxena, Dhruv ;
Mokkapati, Sudha ;
Skalsky, Stefan ;
Tang, Xiaoyan ;
Mitchell, Peter ;
Walton, Alex S. ;
Tan, Hark Hoe ;
Jagadish, Chennupati ;
Parkinson, Patrick .
NANO LETTERS, 2019, 19 (01) :362-368
[2]   Visualizing the role of photoinduced ion migration on photoluminescence in halide perovskite grains [J].
Choi, Hoyeon ;
Ke, Jack Chun-Ren ;
Skalsky, Stefan ;
Castle, Christopher A. ;
Li, Kexue ;
Moore, Katie L. ;
Flavell, Wendy R. ;
Parkinson, Patrick .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (22) :7509-7518
[3]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[4]   Lasing in robust cesium lead halide perovskite nanowires [J].
Eaton, Samuel W. ;
Lai, Minliang ;
Gibson, Natalie A. ;
Wong, Andrew B. ;
Dou, Letian ;
Ma, Jie ;
Wang, Lin-Wang ;
Leone, Stephen R. ;
Yang, Peidong .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (08) :1993-1998
[5]   Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells [J].
Frohna, Kyle ;
Anaya, Miguel ;
Macpherson, Stuart ;
Sung, Jooyoung ;
Doherty, Tiarnan A. S. ;
Chiang, Yu-Hsien ;
Winchester, Andrew J. ;
Orr, Kieran W. P. ;
Parker, Julia E. ;
Quinn, Paul D. ;
Dani, Keshav M. ;
Rao, Akshay ;
Stranks, Samuel D. .
NATURE NANOTECHNOLOGY, 2022, 17 (02) :190-196
[6]   Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits [J].
Herz, Laura M. .
ACS ENERGY LETTERS, 2017, 2 (07) :1539-1548
[7]   A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation [J].
Hua, Jingchen ;
Deng, Xi ;
Niu, Cheng ;
Huang, Fuzhi ;
Peng, Yong ;
Li, Wangnan ;
Ku, Zhiliang ;
Cheng, Yi-bing .
RSC ADVANCES, 2020, 10 (15) :8905-8909
[8]   Suppressing defect states in CsPbBr3 perovskite via magnesium substitution for efficient all-inorganic light-emitting diodes [J].
Huang, Qi ;
Zou, Yatao ;
Bourelle, Sean A. ;
Zhai, Tianshu ;
Wu, Tian ;
Tan, Yeshu ;
Li, Yajuan ;
Li, Junnan ;
Duhm, Steffen ;
Song, Tao ;
Wang, Lu ;
Deschler, Felix ;
Sun, Baoquan .
NANOSCALE HORIZONS, 2019, 4 (04) :924-932
[9]   Achieving long carrier lifetime and high optical gain in all-inorganic CsPbBr3 perovskite films via top and bottom surface modification [J].
Jiang, Li ;
Fang, Zhishan ;
Lou, Haoran ;
Lin, Chen ;
Chen, Zhanhang ;
Li, Jing ;
He, Haiping ;
Ye, Zhizhen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (39) :21996-22001
[10]   Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer [J].
Jiang, Yuyan ;
Huang, Jiaguo ;
Xu, Cheng ;
Pu, Kanyi .
NATURE COMMUNICATIONS, 2021, 12 (01)