Digital light processing of liquid crystal elastomers for self-sensing artificial muscles

被引:198
作者
Li, Shuo [1 ,4 ]
Bai, Hedan [2 ,4 ]
Liu, Zheng [2 ,5 ]
Zhang, Xinyue [1 ]
Huang, Chuqi [1 ]
Wiesner, Lennard W. [3 ]
Silberstein, Meredith L. [1 ,2 ]
Shepherd, Robert F. [1 ,2 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[4] Northwestern Univ, Querrey Simpson Inst Bioelect, Evanston, IL 60208 USA
[5] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
关键词
ACTUATORS; 3D;
D O I
10.1126/sciadv.abg3677
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)-based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg(-1)) and energy density (0.18 MJ m(-3)). We demonstrate actuators composed of these DLP printed LCEs' applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Hydraulically amplified self-healing electrostatic actuators with muscle-like performance [J].
Acome, E. ;
Mitchell, S. K. ;
Morrissey, T. G. ;
Emmett, M. B. ;
Benjamin, C. ;
King, M. ;
Radakovitz, M. ;
Keplinger, C. .
SCIENCE, 2018, 359 (6371) :61-65
[2]   Shape-responsive liquid crystal elastomer bilayers [J].
Agrawal, Aditya ;
Yun, TaeHyun ;
Pesek, Stacy L. ;
Chapman, Walter G. ;
Verduzco, Rafael .
SOFT MATTER, 2014, 10 (09) :1411-1415
[3]   Universal inverse design of surfaces with thin nematic elastomer sheets [J].
Aharoni, Hillel ;
Xia, Yu ;
Zhang, Xinyue ;
Kamien, Randall D. ;
Yang, Shu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (28) :7206-7211
[4]   Self-assembled shape-memory fibers of triblock liquid-crystal polymers [J].
Ahir, SV ;
Tajbakhsh, AR ;
Terentjev, EM .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (04) :556-560
[5]   STORAGE OF ELASTIC STRAIN-ENERGY IN MUSCLE AND OTHER TISSUES [J].
ALEXANDER, RM ;
BENNETCLARK, HC .
NATURE, 1977, 265 (5590) :114-117
[6]   Four-dimensional Printing of Liquid Crystal Elastomers [J].
Ambulo, Cedric P. ;
Burroughs, Julia J. ;
Boothby, Jennifer M. ;
Kim, Hyun ;
Shankar, M. Ravi ;
Ware, Taylor H. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) :37332-37339
[7]   Stretchable distributed fiber-optic sensors [J].
Bai, Hedan ;
Li, Shuo ;
Barreiros, Jose ;
Tu, Yaqi ;
Pollock, Clifford R. ;
Shepherd, Robert F. .
SCIENCE, 2020, 370 (6518) :848-+
[8]   Stretchable pumps for soft machines [J].
Cacucciolo, Vito ;
Shintake, Jun ;
Kuwajima, Yu ;
Maeda, Shingo ;
Floreano, Dario ;
Shea, Herbert .
NATURE, 2019, 572 (7770) :516-+
[9]   A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing [J].
Chen, Ling ;
Wang, Meng ;
Guo, Ling-Xiang ;
Lin, Bao-Ping ;
Yang, Hong .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (30) :8251-8257
[10]  
Davidson E. C., 2020, ADV MATER, V32, DOI DOI 10.1002/adma.201905682