High-order finite volume methods and multiresolution reproducing kernels

被引:25
作者
Cueto-Felgueroso, Luis [1 ]
Colominas, Ignasi [2 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Univ A Coruna, Sch Civil Engn, La Coruna 15071, Spain
关键词
D O I
10.1007/s11831-008-9017-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a review of some of the most successful higher-order numerical schemes for the compressible Navier-Stokes equations on unstructured grids. A suitable candidate scheme would need to be able to handle potentially discontinuous flows, arising from the predominantly hyperbolic character of the equations, and at the same time be well suited for elliptic problems, in order to deal with the viscous terms. Within this context, we explore the performance of Moving Least-Squares (MLS) approximations in the construction of higher order finite volume schemes on unstructured grids. The scope of the application of MLS is threefold: 1) computation of high order derivatives of the field variables for a Godunov-type approach to hyperbolic problems or terms of hyperbolic character, 2) direct reconstruction of the fluxes at cell edges, for elliptic problems or terms of elliptic character, and 3) multiresolution shock detection and selective limiting. The proposed finite volume method is formulated within a continuous spatial representation framework, provided by the MLS approximants, which is "broken" locally (inside each cell) into piecewise polynomial expansions, in order to make use of the specialized finite volume technology for hyperbolic problems. This approach is in contrast with the usual practice in the finite volume literature, which proceeds bottom-up, starting from a piecewise constant spatial representation. Accuracy tests show that the proposed method achieves the expected convergence rates. Representative simulations show that the methodology is applicable to problems of engineering interest, and very competitive when compared to other existing procedures.
引用
收藏
页码:185 / 228
页数:44
相关论文
共 109 条
[1]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[2]   Residual distribution schemes on quadrilateral meshes [J].
Abgrall, R. ;
Marpeau, F. .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (01) :131-175
[3]   Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems [J].
Abgrall, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (02) :773-808
[4]   Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes [J].
Abgrall, R ;
Andranov, N ;
Mezine, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (8-9) :679-691
[5]   Construction of second-order accurate monotone and stable residual distribution schemes for steady problems [J].
Abgrall, R ;
Mezine, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) :474-507
[6]   Residual distribution schemes for conservation laws via adaptive quadrature [J].
Abgrall, R ;
Barth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03) :732-769
[7]   High order fluctuation schemes on triangular meshes [J].
Abgrall, R ;
Roe, PL .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :3-36
[8]   Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems [J].
Abgrall, R ;
Mezine, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (01) :16-55
[9]   Toward the ultimate conservative scheme: Following the quest [J].
Abgrall, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (02) :277-315