On the Saturation Phenomenon of Stochastic Gradient Descent for Linear Inverse Problems*

被引:4
|
作者
Jin, Bangti [1 ]
Zhou, Zehui [2 ]
Zou, Jun [2 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2021年 / 9卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
  stochastic gradient descent; regularizing property; convergence rate; saturation; inverse problems; APPROXIMATION; CONVERGENCE;
D O I
10.1137/20M1374456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stochastic gradient descent (SGD) is a promising method for solving large-scale inverse problems due to its excellent scalability with respect to data size. The current mathematical theory in the lens of regularization theory predicts that SGD with a polynomially decaying stepsize schedule may suffer from an undesirable saturation phenomenon; i.e., the convergence rate does not further improve with the solution regularity index when it is beyond a certain range. In this work, we present a refined convergence rate analysis of SGD and prove that saturation actually does not occur if the initial stepsize of the schedule is sufficiently small. Several numerical experiments are provided to complement the analysis.
引用
收藏
页码:1553 / 1588
页数:36
相关论文
共 50 条
  • [41] On the different regimes of stochastic gradient descent
    Sclocchi, Antonio
    Wyart, Matthieu
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 121 (09)
  • [42] Graph Drawing by Stochastic Gradient Descent
    Zheng, Jonathan X.
    Pawar, Samraat
    Goodman, Dan F. M.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (09) : 2738 - 2748
  • [43] Benign Underfitting of Stochastic Gradient Descent
    Koren, Tomer
    Livni, Roi
    Mansour, Yishay
    Sherman, Uri
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [44] SMOOTHING PROJECTED GRADIENT METHOD AND ITS APPLICATION TO STOCHASTIC LINEAR COMPLEMENTARITY PROBLEMS
    Zhang, Chao
    Chen, Xiaojun
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) : 627 - 649
  • [45] A Stochastic Gradient Descent Approach for Stochastic Optimal Control
    Archibald, Richard
    Bao, Feng
    Yong, Jiongmin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 635 - 658
  • [46] The inverse variance-flatness relation in stochastic gradient descent is critical for finding flat minima
    Feng, Yu
    Tu, Yuhai
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (09)
  • [47] On early stopping of stochastic mirror descent method for ill-posed inverse problems
    Huang, Jing
    Jin, Qinian
    Lu, Xiliang
    Zhang, Liuying
    NUMERISCHE MATHEMATIK, 2025, : 539 - 571
  • [48] Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model
    Berthier, Raphael
    Bach, Francis
    Gaillard, Pierre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] An Efficient Preconditioner for Stochastic Gradient Descent Optimization of Image Registration
    Qiao, Yuchuan
    Lelieveldt, Boudewijn P. F.
    Staring, Marius
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2314 - 2325
  • [50] Weighted Aggregating Stochastic Gradient Descent for Parallel Deep Learning
    Guo, Pengzhan
    Ye, Zeyang
    Xiao, Keli
    Zhu, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) : 5037 - 5050