On the Saturation Phenomenon of Stochastic Gradient Descent for Linear Inverse Problems*

被引:4
|
作者
Jin, Bangti [1 ]
Zhou, Zehui [2 ]
Zou, Jun [2 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2021年 / 9卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
  stochastic gradient descent; regularizing property; convergence rate; saturation; inverse problems; APPROXIMATION; CONVERGENCE;
D O I
10.1137/20M1374456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stochastic gradient descent (SGD) is a promising method for solving large-scale inverse problems due to its excellent scalability with respect to data size. The current mathematical theory in the lens of regularization theory predicts that SGD with a polynomially decaying stepsize schedule may suffer from an undesirable saturation phenomenon; i.e., the convergence rate does not further improve with the solution regularity index when it is beyond a certain range. In this work, we present a refined convergence rate analysis of SGD and prove that saturation actually does not occur if the initial stepsize of the schedule is sufficiently small. Several numerical experiments are provided to complement the analysis.
引用
收藏
页码:1553 / 1588
页数:36
相关论文
共 50 条
  • [31] STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT
    Chen, Xi
    Lee, Jason D.
    Tong, Xin T.
    Zhang, Yichen
    ANNALS OF STATISTICS, 2020, 48 (01): : 251 - 273
  • [32] Convergence of Stochastic Gradient Descent in Deep Neural Network
    Zhou, Bai-cun
    Han, Cong-ying
    Guo, Tian-de
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01): : 126 - 136
  • [33] Stochastic gradient descent for semilinear elliptic equations with uncertainties
    Wang, Ting
    Knap, Jaroslaw
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
  • [34] Learning Rates for Stochastic Gradient Descent With Nonconvex Objectives
    Lei, Yunwen
    Tang, Ke
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4505 - 4511
  • [35] OPTIMAL SURVEY SCHEMES FOR STOCHASTIC GRADIENT DESCENT WITH APPLICATIONS TO M-ESTIMATION
    Clemencon, Stephan
    Bertail, Patrice
    Chautru, Emilie
    Papa, Guillaume
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 310 - 337
  • [36] On the Convergence of a Data-Driven Regularized Stochastic Gradient Descent for Nonlinear Ill-Posed Problems
    Zhou, Zehui
    SIAM JOURNAL ON IMAGING SCIENCES, 2025, 18 (01): : 388 - 448
  • [37] Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
    Chen, Ruijuan
    Tang, Xiaoquan
    Li, Xiuting
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [38] On the Hyperparameters in Stochastic Gradient Descent with Momentum
    Shi, Bin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [39] On the Generalization of Stochastic Gradient Descent with Momentum
    Ramezani-Kebrya, Ali
    Antonakopoulos, Kimon
    Cevher, Volkan
    Khisti, Ashish
    Liang, Ben
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [40] Randomized Stochastic Gradient Descent Ascent
    Sebbouh, Othmane
    Cuturi, Marco
    Peyre, Gabriel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151