On the Saturation Phenomenon of Stochastic Gradient Descent for Linear Inverse Problems*

被引:4
|
作者
Jin, Bangti [1 ]
Zhou, Zehui [2 ]
Zou, Jun [2 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2021年 / 9卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
  stochastic gradient descent; regularizing property; convergence rate; saturation; inverse problems; APPROXIMATION; CONVERGENCE;
D O I
10.1137/20M1374456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stochastic gradient descent (SGD) is a promising method for solving large-scale inverse problems due to its excellent scalability with respect to data size. The current mathematical theory in the lens of regularization theory predicts that SGD with a polynomially decaying stepsize schedule may suffer from an undesirable saturation phenomenon; i.e., the convergence rate does not further improve with the solution regularity index when it is beyond a certain range. In this work, we present a refined convergence rate analysis of SGD and prove that saturation actually does not occur if the initial stepsize of the schedule is sufficiently small. Several numerical experiments are provided to complement the analysis.
引用
收藏
页码:1553 / 1588
页数:36
相关论文
共 50 条
  • [21] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [22] On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent
    Laumont, Remi
    De Bortoli, Valentin
    Almansa, Andres
    Delon, Julie
    Durmus, Alain
    Pereyra, Marcelo
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (1) : 140 - 163
  • [23] Forecasting with imperfect models, dynamically constrained inverse problems, and gradient descent algorithms
    Judd, Kevin
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 216 - 232
  • [24] Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems trained with Gradient Descent
    Buskulic, Nathan
    Queau, Yvain
    Fadili, Jalal
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1806 - 1810
  • [25] THE LIMITATION AND PRACTICAL ACCELERATION OF STOCHASTIC GRADIENT ALGORITHMS IN INVERSE PROBLEMS
    Tang, Junqi
    Egiazarian, Karen
    Davies, Mike
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7680 - 7684
  • [26] Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis
    Jia, Ningning
    Lam, Edmund Y.
    JOURNAL OF OPTICS, 2010, 12 (04)
  • [27] Stability analysis of stochastic gradient descent for homogeneous neural networks and linear classifiers
    Paquin, Alexandre Lemire
    Chaib-draa, Brahim
    Giguere, Philippe
    NEURAL NETWORKS, 2023, 164 : 382 - 394
  • [28] A new stochastic gradient descent possibilistic clustering algorithm
    Koutsimpela, Angeliki
    Koutroumbas, Konstantinos D.
    AI COMMUNICATIONS, 2022, 35 (02) : 47 - 64
  • [29] Brain Source Localization Using Stochastic Gradient Descent
    Al-Momani, Sajedah
    Mir, Hasan
    Al-Nashash, Hasan
    Al-Kaylani, Muhammad
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 8375 - 8383
  • [30] Convergence of Stochastic Gradient Descent in Deep Neural Network
    Bai-cun Zhou
    Cong-ying Han
    Tian-de Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 126 - 136