Composable and Versatile Privacy via Truncated CDP

被引:87
作者
Bun, Mark [1 ]
Dwork, Cynthia [2 ]
Rothblum, Guy N. [3 ]
Steinke, Thomas [4 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Weizmann Inst Sci, Rehovot, Israel
[4] IBM Res Almaden, San Jose, CA USA
来源
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING | 2018年
基金
以色列科学基金会; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
differential privacy; algorithmic stability; subsampling;
D O I
10.1145/3188745.3188946
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 2006, TCC
[2]  
[Anonymous], 2016, P 2016 ACM SIGSAC C
[3]  
[Anonymous], 2010, FOCS
[4]  
[Anonymous], 2006, EUROCRYPT
[5]  
[Anonymous], 2009, STOC
[6]  
Bafna Mitali, 2017, P MACHINE LEARNING R, P151
[7]  
Beimel Amos, 2013, APPROX RANDOM
[8]  
Bhaskar R., 2010, KDD, P503, DOI DOI 10.1145/1835804.1835869
[9]  
Bun Mark, 2015, FOCS
[10]  
Bun Mark, 2016, TCC