INVARIANCE TIMES

被引:8
|
作者
Crepey, Stephane [1 ]
Song, Shiqi [1 ]
机构
[1] Univ Paris Saclay, Univ Evry, CNRS, LAMME, F-91037 Evry, France
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 6B期
关键词
Random time; enlargement of filtration; measure change; mathematical finance; COUNTERPARTY RISK; ENLARGEMENTS; FILTRATIONS; VALUATION; ARBITRAGE;
D O I
10.1214/17-AOP1174
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
On a probability space (Omega, A, Q), we consider two filtrations F subset of G and a G stopping time theta such that the G predictable processes coincide with F predictable processes on (0,theta]. In this setup, it is well known that, for any F semimartingale X, the process X theta- (X stopped "right before theta") is a G semimartingale. Given a positive constant T, we call theta an invariance time if there exists a probability measure P equivalent to Q on F-T such that, for any (F, P) local martingale X, X theta- is a (G, Q) local martingale. We characterize invariance times in terms of the (F, Q) Azema supermartingale of theta and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.
引用
收藏
页码:4632 / 4674
页数:43
相关论文
共 50 条
  • [1] Times of arrival and gauge invariance
    Das, Siddhant
    Noeth, Markus
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2250):
  • [2] Invariance times transfer properties
    Crepey, Stephane
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2024, 9 (04): : 431 - 452
  • [3] STRONG INVARIANCE FOR LOCAL-TIMES
    CSAKI, E
    REVESZ, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02): : 263 - 278
  • [4] An invariance property of sojourn times in cyclic networks
    Malchin, C
    Daduna, H
    OPERATIONS RESEARCH LETTERS, 2005, 33 (01) : 1 - 8
  • [5] Characteristic relaxation times and their invariance to thermodynamic conditions
    Roland, C. M.
    SOFT MATTER, 2008, 4 (12) : 2316 - 2322
  • [6] Invariance Principles for Paced Record Times and Applications
    Gratiane Ennadifi
    Extremes, 1999, 2 (2) : 201 - 217
  • [7] Exceptional times and invariance for dynamical random walks
    Davar Khoshnevisan
    David A. Levin
    Pedro J. Méndez-Hernández
    Probability Theory and Related Fields, 2006, 134 : 383 - 416
  • [8] A note on the weak invariance principle for local times
    Kang, JS
    Wee, IS
    STATISTICS & PROBABILITY LETTERS, 1997, 32 (02) : 147 - 159
  • [10] Exceptional times and invariance for dynamical random walks
    Khoshnevisan, D
    Levin, DA
    Méndez-Hernández, PJ
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (03) : 383 - 416