DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation

被引:44
作者
Ma, Hanyu [1 ]
Schneider, William F. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
关键词
Ammonia oxidation; Platinum group metals; Density functional theory; Microkinetic modeling; Structure sensitivity; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; NH3; OXIDATION; STRUCTURE SENSITIVITY; MECHANISM; PLATINUM; DECOMPOSITION; SELECTIVITY; REDUCTION;
D O I
10.1016/j.jcat.2020.01.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia oxidation is the heart of the Ostwald process and is important in emissions control. Catalytic behaviors are a function of conditions and are observed to vary across the platinum group metals (PGMs) Pt, Pd, Rh. Here, we combine density functional theory computations and microkinetic modeling to rationalize these dependencies. We compute reactions over model (2 1 1) and (1 1 1) surfaces of PGMs. Binding energies are similar on Pd and Pt and generally greater on Rh, while activation energies vary across all metals. Rates on (2 1 1) surfaces are greater than (1 1 1) surfaces. The stepped Pt is most active and stepped Rh most selective to N-2 at ammonia slip conditions, while at Ostwald process conditions, stepped Pd is most active and stepped Pt most selective to NO. Degree of rate and selectivity control analysis provides insights into the reactions limiting performance of PGMs. Both activation barriers and surface coverages influence rates and selectivities. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 330
页数:9
相关论文
共 53 条
[1]  
Bartholomew CH, 2006, FUNDAMENTALS OF INDUSTRIAL CATALYTIC PROCESSES, 2ND EDITION, P1, DOI 10.1002/9780471730071
[2]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   The Degree of Rate Control: A Powerful Tool for Catalysis Research [J].
Campbell, Charles T. .
ACS CATALYSIS, 2017, 7 (04) :2770-2779
[5]  
Chase M. W., 1998, J PHYS CHEM REFERENC, V9
[6]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[7]   Advances in selective catalytic oxidation of ammonia to dinitrogen: a review [J].
Chmielarz, Lucjan ;
Jablonska, Magdalena .
RSC ADVANCES, 2015, 5 (54) :43408-43431
[8]   Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals [J].
Chmielarz, Lucjan ;
Jablonska, Magdalena ;
Struminski, Adam ;
Piwowarska, Zofia ;
Wegrzyn, Agnieszka ;
Witkowski, Stefan ;
Michalik, Marek .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 130 :152-162
[9]   DFT comparison of intrinsic WGS kinetics over Pd and Pt [J].
Clay, John P. ;
Greeley, Jeffrey P. ;
Ribeiro, Fabio H. ;
Delgass, W. Nicholas ;
Schneider, William F. .
JOURNAL OF CATALYSIS, 2014, 320 :106-117
[10]   Structural selectivity of supported Pd nanoparticles for catalytic NH3 oxidation resolved using combined operando spectroscopy [J].
Dann, Ellie K. ;
Gibson, Emma K. ;
Blackmore, Rachel H. ;
Catlow, C. Richard A. ;
Collier, Paul ;
Chutia, Arunabhiram ;
Erden, Tugce Eralp ;
Hardacre, Christopher ;
Kroner, Anna ;
Nachtegaal, Maarten ;
Raj, Agnes ;
Rogers, Scott M. ;
Taylor, S. F. Rebecca ;
Thompson, Paul ;
Tierney, George F. ;
Zeinalipour-Yazdi, Constantinos D. ;
Goguet, Alexandre ;
Wells, Peter P. .
NATURE CATALYSIS, 2019, 2 (02) :157-163