SCA-Net: A Spatial and Channel Attention Network for Medical Image Segmentation

被引:25
作者
Shan, Tong [1 ]
Yan, Jiayong [2 ,3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Hlth Sci & Engn, Shanghai 200093, Peoples R China
[2] Shanghai Univ Med & Hlth Sci, Sch Med Instruments, Shanghai 201318, Peoples R China
[3] Chinese Acad Sci, Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
关键词
Image segmentation; Feature extraction; Task analysis; Medical diagnostic imaging; Convolution; Decoding; Semantics; Deep learning; multiscale contextual information; attention; medical image segmentation; PANCREAS SEGMENTATION;
D O I
10.1109/ACCESS.2021.3132293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic medical image segmentation is a critical tool for medical image analysis and disease treatment. In recent years, convolutional neural networks (CNNs) have played an important role in this field, and U-Net is one of the most famous fully convolutional network architectures among many kinds of CNNs for medical segmentation tasks. However, the CNNs based on U-Net used for medical image segmentation rely only on simple concatenation operation of multiscale features. The spatial and channel context information is easily missed. To capture the spatial and channel context information and improve the segmentation performance, in this paper, a spatial and channel attention network (SCA-Net) is proposed. SCA-Net presents two novel blocks: a spatial attention block and a channel attention block. The spatial attention block (SAB) combines the multiscale information from high-level and low-level stages to learn more representative spatial features, and the channel attention block (CAB) redistributes the channel feature responses to strengthen the most critical channel information while restraining the irrelevant channels. Compared with other state-of-the-art networks, our proposed framework obtained better segmentation performance in each of the three public datasets. The average Dice score improved from 88.79% to 92.92% for skin lesion segmentation, 94.02% to 98.25% for thyroid gland segmentation and 87.98% to 91.37% for pancreas segmentation compared with U-Net. Additionally, the Bland-Altman analysis showed that our network had better agreement between automatic and manually calculated areas in each task.
引用
收藏
页码:160926 / 160937
页数:12
相关论文
共 47 条
[1]  
[Anonymous], 1964, Plastics
[2]  
[Anonymous], 2018, SCI DATA, DOI DOI 10.1038/sdata.2018.161
[3]  
[Anonymous], 2019, INT CONF ASIC, DOI DOI 10.1109/asicon47005.2019.8983520
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]  
Codella Noel C. F., 2019, CoRR abs/1902.03368
[10]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149