Depth-encoded spectral domain phase microscopy for simultaneous multi-site nanoscale optical measurements

被引:3
作者
Hendargo, Hansford C. [1 ]
Bower, Bradley A. [1 ]
Reinstein, Alex S. [1 ]
Shepherd, Neal [2 ]
Tao, Yuankai K. [1 ]
Izatt, Joseph A. [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Med Ctr, Dept Pediat, Jean & George Brumley Jr Neonatal Perinatal Res I, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
Phase microscopy; Optical coherence tomography; Interferometry; Nanoscale measurement; COHERENCE TOMOGRAPHY; FIBER;
D O I
10.1016/j.optcom.2011.06.001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spectral domain phase microscopy (SDPM) is an extension of spectral domain optical coherence tomography (SDOCT) that exploits the extraordinary phase stability of spectrometer-based systems with common-path geometry to resolve sub-wavelength displacements within a sample volume. This technique has been implemented for high resolution axial displacement and velocity measurements in biological samples, but since axial displacement information is acquired serially along the lateral dimension, it has been unable to measure fast temporal dynamics in extended samples. Depth-encoded SDPM (DESDPM) uses multiple sample arms with unevenly spaced common path reference reflectors to multiplex independent SDPM signals from separate lateral positions on a sample simultaneously using a single interferometer, thereby reducing the time required to detect unique optical events to the integration period of the detector. Here, we introduce DESDPM and demonstrate the ability to acquire useful phase data concurrently at two laterally separated locations in a phantom sample as well as a biological preparation of spontaneously beating chick cardiomyocytes. DESDPM may be a useful tool for imaging fast cellular phenomena such as nervous conduction velocity or contractile motion. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4847 / 4851
页数:5
相关论文
共 16 条
[1]   Depth-resolved measurement of transient structural changes during action potential propagation [J].
Akkin, Taner ;
Joo, Chulmin ;
de Boer, Johannes F. .
BIOPHYSICAL JOURNAL, 2007, 93 (04) :1347-1353
[2]   Dual beam heterodyne Fourier domain optical coherence tomography [J].
Bachmann, Adrian H. ;
Michaely, Roland ;
Lasser, Theo ;
Leitgeb, Rainer A. .
OPTICS EXPRESS, 2007, 15 (15) :9254-9266
[3]   Spectral-domain phase microscopy [J].
Choma, MA ;
Ellerbee, AK ;
Yang, CH ;
Creazzo, TL ;
Izatt, JA .
OPTICS LETTERS, 2005, 30 (10) :1162-1164
[4]   Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy [J].
Choma, Michael A. ;
Ellerbee, Audrey K. ;
Yazdanfar, Siavash ;
Izatt, Joseph A. .
JOURNAL OF BIOMEDICAL OPTICS, 2006, 11 (02)
[5]   Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal [J].
Davis, AM ;
Choma, MA ;
Izatt, JA .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (06)
[6]   Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy [J].
Ellerbee, Audrey K. ;
Creazzo, Tony L. ;
Izatt, Joseph A. .
OPTICS EXPRESS, 2007, 15 (13) :8115-8124
[7]  
Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI 10.2184/lsj.31.635
[8]   Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera [J].
Grulkowski, Ireneusz ;
Gora, Michalina ;
Szkulmowski, Maciej ;
Gorczynska, Iwona ;
Szlag, Daniel ;
Marcos, Susana ;
Kowalczyk, Andrzej ;
Wojtkowski, Maciej .
OPTICS EXPRESS, 2009, 17 (06) :4842-4858
[9]   Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography [J].
Huber, R ;
Wojtkowski, M ;
Fujimoto, JG .
OPTICS EXPRESS, 2006, 14 (08) :3225-3237
[10]   Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging [J].
Joo, C ;
Akkin, T ;
Cense, B ;
Park, BH ;
de Boer, JE .
OPTICS LETTERS, 2005, 30 (16) :2131-2133