Machine-learning Regression of Extinction in the Second Gaia Data Release

被引:8
作者
Bai, Yu [1 ]
Liu, JiFeng [1 ,2 ]
Wang, YiLun [1 ,2 ]
Wang, Song [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, 20A Datun Rd, Beijing 100012, Peoples R China
[2] Univ Chinese Acad Sci, Coll Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 美国安德鲁·梅隆基金会;
关键词
LOW-MASS STARS; SEGUE; DWARFS; III; RAVE; AGES;
D O I
10.3847/1538-3881/ab63d5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning has become a popular tool to help us make better decisions and predictions, based on experiences, observations, and analyzing patterns, within a given data set without explicit functions. In this paper, we describe an application of the supervised machine-learning algorithm to the extinction regression for the second Gaia data release, based on the combination of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, Sloan Extension for Galactic Understanding and Exploration, and the Apache Point Observatory Galactic Evolution Experiment. The derived extinction in our training sample is consistent with other spectrum-based estimates, and its standard deviation of the cross-validations is 0.0127 mag. A blind test is carried out using the RAdial Velocity Experiment catalog, and the standard deviation is 0.0372 mag. Such a precise training sample enables us to regress the extinction, E(BP-RP), for 133 million stars in the second Gaia data release. Of these, 106 million stars have the uncertainties less than 0.1 mag, which suffer less bias from the external regression. We also find that there are high deviations between the extinctions from photometry-based methods, and between spectrum- and photometry-based methods. This implies that the spectrum-based method could bring more signal to a regressing model than multiband photometry, and a higher signal-to-noise ratio would acquire a more reliable result.
引用
收藏
页数:7
相关论文
共 45 条
[1]  
Allard F, 2012, ASTR SOC P, V448, P91
[2]   Models of very-low-mass stars, brown dwarfs and exoplanets [J].
Allard, F. ;
Homeier, D. ;
Freytag, B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1968) :2765-2777
[3]  
Allard F, 2009, ASTRON ASTROPHYS, V500, P93, DOI 10.1051/0004-6361/200912149
[4]   Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G=18 [J].
Anders, F. ;
Khalatyan, A. ;
Chiappini, C. ;
Queiroz, A. B. ;
Santiago, B. X. ;
Jordi, C. ;
Girardi, L. ;
Brown, A. G. A. ;
Matijevic, G. ;
Monari, G. ;
Cantat-Gaudin, T. ;
Weiler, M. ;
Khan, S. ;
Miglio, A. ;
Carrillo, I ;
Romero-Gomez, M. ;
Minchev, I ;
de Jong, R. S. ;
Antoja, T. ;
Ramos, P. ;
Steinmetz, M. ;
Enke, H. .
ASTRONOMY & ASTROPHYSICS, 2019, 628
[5]   First stellar parameters from Apsis [J].
Andrae, Rene ;
Fouesneau, Morgan ;
Creevey, Orlagh ;
Ordenovic, Christophe ;
Mary, Nicolas ;
Burlacu, Alexandru ;
Chaoul, Laurence ;
Jean-Antoine-Piccolo, Anne ;
Kordopatis, Georges ;
Korn, Andreas ;
Lebreton, Yveline ;
Panem, Chantal ;
Pichon, Bernard ;
Thevenin, Frederic ;
Walmsley, Gavin ;
Bailer-Jones, Coryn A. L. .
ASTRONOMY & ASTROPHYSICS, 2018, 616
[6]   Gaia Data Release 2 Catalogue validation [J].
Arenou, F. ;
Luri, X. ;
Babusiaux, C. ;
Fabricius, C. ;
Helmi, A. ;
Muraveva, T. ;
Robin, A. C. ;
Spoto, F. ;
Vallenari, A. ;
Antoja, T. ;
Cantat-Gaudin, T. ;
Jordi, C. ;
Leclerc, N. ;
Reyle, C. ;
Romero-Gomez, M. ;
Shih, I. -C. ;
Soria, S. ;
Barache, C. ;
Bossini, D. ;
Bragaglia, A. ;
Breddels, M. A. ;
Fabrizio, M. ;
Lambert, S. ;
Marrese, P. M. ;
Massari, D. ;
Moitinho, A. ;
Robichon, N. ;
Ruiz-Dern, L. ;
Sordo, R. ;
Veljanoski, J. ;
Eyer, L. ;
Jasniewicz, G. ;
Pancino, E. ;
Soubiran, C. ;
Spagna, A. ;
Tanga, P. ;
Turon, C. ;
Zurbach, C. .
ASTRONOMY & ASTROPHYSICS, 2018, 616
[7]   Machine-learning Regression of Stellar Effective Temperatures in the Second Gaia Data Release [J].
Bai, Yu ;
Lu, JiFeng ;
Bai, ZhongRui ;
Wang, Song ;
Fan, DongWei .
ASTRONOMICAL JOURNAL, 2019, 158 (02)
[8]   Machine Learning Applied to Star-Galaxy-QSO Classification and Stellar Effective Temperature Regression [J].
Bai, Yu ;
Liu, JiFeng ;
Wang, Song ;
Yang, Fan .
ASTRONOMICAL JOURNAL, 2019, 157 (01)
[9]   Comparison of Different Interpolation Algorithm in Feature-based Template Matching for Stellar Parameters Analysis [J].
BingDu ;
Luo, ALi ;
Zhang, JianNan ;
YueWu ;
Wang, FengFei .
SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY II, 2012, 8451
[10]   New distances to RAVE stars [J].
Binney, J. ;
Burnett, B. ;
Kordopatis, G. ;
McMillan, P. J. ;
Sharma, S. ;
Zwitter, T. ;
Bienayme, O. ;
Bland-Hawthorn, J. ;
Steinmetz, M. ;
Gilmore, G. ;
Williams, M. E. K. ;
Navarro, J. ;
Grebel, E. K. ;
Helmi, A. ;
Parker, Q. ;
Reid, W. A. ;
Seabroke, G. ;
Watson, F. ;
Wyse, R. F. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (01) :351-370