Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration

被引:394
作者
Hellenbrand, Daniel J. [1 ]
Quinn, Charles M. [1 ]
Piper, Zachariah J. [1 ]
Morehouse, Carolyn N. [1 ]
Fixel, Jordyn A. [1 ]
Hanna, Amgad S. [1 ]
机构
[1] Univ Wisconsin, Dept Neurol Surg, Sch Med & Publ Hlth UWSMPH, 600 Highland Ave, Madison, WI 53792 USA
基金
美国国家卫生研究院;
关键词
Spinal cord injury; Inflammation; Secondary cascade; Macrophages; Cytokines; Microglia; Astrocytes; IMPROVES FUNCTIONAL RECOVERY; MEDIATED AXONAL DIEBACK; CHEMOKINE MESSENGER-RNA; CENTRAL-NERVOUS-SYSTEM; GM-CSF; CEREBROSPINAL-FLUID; SECONDARY INJURY; NEUROPROTECTIVE THERAPY; ALTERNATIVE ACTIVATION; INTERLEUKIN-1; RECEPTOR;
D O I
10.1186/s12974-021-02337-2
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Traumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.
引用
收藏
页数:16
相关论文
共 191 条
[1]   RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation [J].
Appay, V ;
Dunbar, PR ;
Cerundolo, V ;
McMichael, A ;
Czaplewski, L ;
Rowland-Jones, S .
INTERNATIONAL IMMUNOLOGY, 2000, 12 (08) :1173-1182
[2]   TGF-β receptors: In and beyond TGF-β signaling [J].
Ark, Alexandra Vander ;
Cao, Jingchen ;
Li, Xiaohong .
CELLULAR SIGNALLING, 2018, 52 :112-120
[3]   The Relationship between Localized Subarachnoid Inflammation and Parenchymal Pathophysiology after Spinal Cord Injury [J].
Austin, James W. ;
Afshar, Mehdi ;
Fehlings, Michael G. .
JOURNAL OF NEUROTRAUMA, 2012, 29 (10) :1838-1849
[4]   ACTIVATION OF DUAL T-CELL SIGNALING PATHWAYS BY THE CHEMOKINE RANTES [J].
BACON, KB ;
PREMACK, BA ;
GARDNER, P ;
SCHALL, TJ .
SCIENCE, 1995, 269 (5231) :1727-1730
[5]   Blockade of Interleukin-7 Receptor Shapes Macrophage Alternative Activation and Promotes Functional Recovery After Spinal Cord Injury [J].
Bao, Changshun ;
Wang, Bin ;
Yang, Fubing ;
Chen, Ligang .
NEUROSCIENCE, 2018, 371 :518-527
[6]   Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: An in situ hybridization study [J].
Bartholdi, D ;
Schwab, ME .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1997, 9 (07) :1422-1438
[7]   IL-1α Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3 [J].
Bastien, Dominic ;
Landete, Victor Bellver ;
Lessard, Martine ;
Vallieres, Nicolas ;
Champagne, Mathieu ;
Takashima, Akira ;
Tremblay, Marie-Eve ;
Doyon, Yannick ;
Lacroix, Steve .
JOURNAL OF NEUROSCIENCE, 2015, 35 (30) :10715-10730
[8]   Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment [J].
Beck, Kevin D. ;
Nguyen, Hal X. ;
Galvan, Manuel D. ;
Salazar, Desiree L. ;
Woodruff, Trent M. ;
Anderson, Aileen J. .
BRAIN, 2010, 133 :433-447
[9]   Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury [J].
Bellver-Landete, Victor ;
Bretheau, Floriane ;
Mailhot, Benoit ;
Vallieres, Nicolas ;
Lessard, Martine ;
Janelle, Marie-Eve ;
Vernoux, Nathalie ;
Tremblay, Marie-Eve ;
Fuehrmann, Tobias ;
Shoichet, Molly S. ;
Lacroix, Steve .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats [J].
Bethea, JR ;
Nagashima, H ;
Acosta, MC ;
Briceno, C ;
Gomez, F ;
Marcillo, AE ;
Loor, K ;
Green, J ;
Dietrich, WD .
JOURNAL OF NEUROTRAUMA, 1999, 16 (10) :851-863