A window into lysogeny: revealing temperate phage biology with transcriptomics

被引:30
作者
Owen, Sian, V [1 ,2 ]
Canals, Rocio [2 ]
Wenner, Nicolas [2 ]
Hammarlof, Disa L. [2 ,3 ]
Kroger, Carsten [2 ,4 ]
Hinton, Jay C. D. [2 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[3] KTH, Sci Life Lab, Stockholm, Sweden
[4] Trinity Coll Dublin, Sch Genet & Microbiol, Moyne Inst Prevent Med, Dept Microbiol, Dublin 2, Ireland
来源
MICROBIAL GENOMICS | 2020年 / 6卷 / 02期
基金
瑞士国家科学基金会; 英国惠康基金;
关键词
bacteriophage; transcriptomics; RNA-seq; lysogeny; prophage; GENE-EXPRESSION; BACTERIOPHAGE-LAMBDA; SMALL RNAS; SALMONELLA; PROPHAGES; EVOLUTION; VIRULENCE; RESISTANCE; DIVERSITY; SURVIVAL;
D O I
10.1099/mgen.0.000330
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Revealing developmental networks by comparative transcriptomics
    Hashimshony, Tamar
    Yanai, Itai
    TRANSCRIPTION-AUSTIN, 2010, 1 (03): : 154 - 158
  • [22] Editorial: Aquatic genomics and transcriptomics for evolutionary biology
    Ovchinnikova, Tatiana V.
    Shi, Qiong
    FRONTIERS IN GENETICS, 2023, 14
  • [23] Editorial: Insights in phage biology: 2021
    Almeida, Adelaide
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [24] Clostridioides difficile phage biology and application
    Heuler, Joshua
    Fortier, Louis-Charles
    Sun, Xingmin
    FEMS MICROBIOLOGY REVIEWS, 2021, 45 (05)
  • [25] Analysis of Infection Time Courses Shows CII Levels Determine the Frequency of Lysogeny in Phage 186
    Hao, Nan
    Agnew, Dylan
    Krishna, Sandeep
    Dodd, Ian B.
    Shearwin, Keith E.
    PHARMACEUTICALS, 2021, 14 (10)
  • [26] Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features
    Putzeys, Leena
    Poppeliers, Jorien
    Boon, Maarten
    Lood, Cedric
    Vallino, Marta
    Lavignea, Rob
    MSYSTEMS, 2023, 8 (02)
  • [27] Timescales modulate optimal lysis-lysogeny decision switches and near-term phage reproduction
    Shivam, Shashwat
    Li, Guanlin
    Lucia-Sanz, Adriana
    Weitz, Joshua S.
    VIRUS EVOLUTION, 2022, 8 (01)
  • [28] Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda
    Cao, Youfang
    Lu, Hsiao-Mei
    Liang, Jie
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) : 18445 - 18450
  • [29] Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome
    Neve, H
    Freudenberg, W
    Diestel-Feddersen, F
    Ehlert, R
    Heller, KJ
    VIROLOGY, 2003, 315 (01) : 184 - 194
  • [30] A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision
    Silpe, Justin E.
    Bassler, Bonnie L.
    CELL, 2019, 176 (1-2) : 268 - +