A window into lysogeny: revealing temperate phage biology with transcriptomics

被引:30
作者
Owen, Sian, V [1 ,2 ]
Canals, Rocio [2 ]
Wenner, Nicolas [2 ]
Hammarlof, Disa L. [2 ,3 ]
Kroger, Carsten [2 ,4 ]
Hinton, Jay C. D. [2 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Univ Liverpool, Inst Integrat Biol, Liverpool, Merseyside, England
[3] KTH, Sci Life Lab, Stockholm, Sweden
[4] Trinity Coll Dublin, Sch Genet & Microbiol, Moyne Inst Prevent Med, Dept Microbiol, Dublin 2, Ireland
来源
MICROBIAL GENOMICS | 2020年 / 6卷 / 02期
基金
瑞士国家科学基金会; 英国惠康基金;
关键词
bacteriophage; transcriptomics; RNA-seq; lysogeny; prophage; GENE-EXPRESSION; BACTERIOPHAGE-LAMBDA; SMALL RNAS; SALMONELLA; PROPHAGES; EVOLUTION; VIRULENCE; RESISTANCE; DIVERSITY; SURVIVAL;
D O I
10.1099/mgen.0.000330
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny
    Al-Anany, Amany M.
    Fatima, Rabia
    Nair, Gayatri
    Mayol, Jordan T.
    Hynes, Alexander P.
    MBIO, 2024, 15 (06):
  • [2] Phage lysis-lysogeny switches and programmed cell death: Danse macabre
    Benler, Sean
    Koonin, Eugene V.
    BIOESSAYS, 2020, 42 (12)
  • [3] Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny
    Guerrero-Bustamante, Carlos A.
    Hatfull, Graham F.
    MBIO, 2024, 15 (02):
  • [4] Phage Therapy: Going Temperate?
    Monteiro, Rodrigo
    Pires, Diana Priscila
    Costa, Ana Rita
    Azeredo, Joana
    TRENDS IN MICROBIOLOGY, 2019, 27 (04) : 368 - 378
  • [5] Quantification of Lysogeny Caused by Phage Coinfections in Microbial Communities from Biophysical Principles
    Luque, Antoni
    Silveira, Cynthia B.
    MSYSTEMS, 2020, 5 (05)
  • [6] Escherichia coli nfuA is essential for maintenance of Shiga toxin phage Min27 lysogeny under iron-depleted condition
    Cao, Dongmei
    Ji, Wenhui
    Fu, Qiang
    Lu, Chenping
    Wang, Hengan
    Sun, Jianhe
    Yan, Yaxian
    FEMS MICROBIOLOGY LETTERS, 2015, 362 (19)
  • [7] Kinetic Model of the Lysogeny/Lysis Switch of Phage λ
    Ding Hui
    Luo Liao-Fu
    CHINESE PHYSICS LETTERS, 2009, 26 (09)
  • [8] An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation
    Nawel, Zaatout
    Rima, Ouchene
    Amira, Bouaziz
    MICROBIAL PATHOGENESIS, 2022, 165
  • [9] Genome analysis of the Clostridium difficile phage ΦCD6356, a temperate phage of the Siphoviridae family
    Horgan, Marianne
    O'Sullivan, Orla
    Coffey, Aidan
    Fitzgerald, Gerald F.
    van Sinderen, Douwe
    McAuliffe, Olivia
    Ross, R. Paul
    GENE, 2010, 462 (1-2) : 34 - 43
  • [10] MOLECULAR EVIDENCE FOR LYSOGENY IN LACTOBACILLUS-ACIDOPHILUS AND CHARACTERIZATION OF A TEMPERATE BACTERIOPHAGE
    BAREFOOT, SF
    MCARTHUR, JL
    KIDD, JK
    GRINSTEAD, DA
    JOURNAL OF DAIRY SCIENCE, 1990, 73 (09) : 2269 - 2277