SOME GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATOR FOR FUNCTIONS WHOSE SECOND DERIVATIVES IN ABSOLUTE VALUE ARE S-CONVEX

被引:0
作者
Set, E. [1 ]
Dragomir, S. S. [2 ]
Gozpinar, A. [1 ]
机构
[1] Ordu Univ, Fac Sci & Arts, Dept Math, Ordu, Turkey
[2] Victoria Univ, Coll Engn & Sci, Math, Melbourne, Vic, Australia
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2019年 / 88卷 / 01期
关键词
Hermite-Hadamard inequality; convex function; Holder inequality; Riemann-Liouville fractional integral; fractional integral operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a general integral identity for twice differentiable mapping involving fractional integral operators is derived. Secondly by using this identity we obtain some new generalized Hermite-Hadamards type inequalities for functions whose absolute values of second derivatives are s-convex and concave. The main results generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liouville fractional integral. Also we point out, some results in this study in some special cases such as setting s = 1, lambda = alpha, sigma (0) = 1 and w = 0, more reasonable than those obtained in [8].
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
[31]   Some Inequalities of Hermite-Hadamard Type for Functions Whose Third Derivatives Are (α, m)-Convex [J].
Shuang, Ye ;
Wang, Yan ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (02) :272-279
[32]   Some Hermite-Hadamard type inequalities for functions of generalized convex derivative [J].
Korus, P. .
ACTA MATHEMATICA HUNGARICA, 2021, 165 (2) :463-473
[33]   Some new Hermite-Hadamard type inequalities for functions whose nth derivatives are convex [J].
Meftah, B. ;
Merad, M. ;
Ouanas, N. ;
Souahi, A. .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (02) :163-178
[34]   New Conformable Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions [J].
Mohammed, Pshtiwan Othman ;
Hamasalh, Faraidun Kadir .
SYMMETRY-BASEL, 2019, 11 (02)
[35]   Hermite-Hadamard Type Inequalities for B-1-Convex Functions Involving Generalized Fractional Integral Operators [J].
Yesilce, Ilknur ;
Adilov, Gabil .
FILOMAT, 2018, 32 (18) :6457-6464
[36]   Some Hermite-Hadamard type inequalities for functions whose exponentials are convex [J].
Dragomir, Silvestru Sever ;
Gomm, Ian .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (04) :527-534
[37]   ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS [J].
Sarikaya, Mehmet Zeki ;
Avci, Merve ;
Kavurmaci, Havva .
ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 :852-+
[38]   CONFORMABLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF TWO HARMONIC s-CONVEX FUNCTIONS [J].
Meftah, B. ;
Benssaad, M. ;
Kaidouchi, W. ;
Ghomrani, S. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) :1495-1506
[39]   SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-CONVEX [J].
Latif, Muhammad Amer .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (01) :125-146
[40]   On some generalized integral inequalities for functions whose second derivatives in absolute values are convex [J].
Set, Erhan ;
Ekinci, Alper .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (02)